(2003•泉州)如圖,在四個正方形拼接成的圖形中,以這十個點中任意三點為頂點,共能組成    個等腰直角三角形.你愿意把得到上述結(jié)論的探究方法與他人交流嗎?若愿意,請在下方簡要寫出你的探究過程.
【答案】分析:由于正方形各角為90度,如果要構(gòu)成等腰直角三角形,則必須兩邊相等.根據(jù)正方形的性質(zhì),兩鄰邊相等,可解答.
解答:解:如圖所示:以A1為直角頂點的等腰直角三角形有2個,以A2為直角頂點的等腰直角三角形有1個,
以A3為直角頂點的等腰直角三角形有4個,以A4為直角頂點的等腰直角三角形有4個,
以A5為直角頂點的等腰直角三角形有1個,以A6為直角頂點的等腰直角三角形有2個,
以A7為直角頂點的等腰直角三角形有6個,以A8為直角頂點的等腰直角三角形有3個,
以A9為直角頂點的等腰直角三角形有3個,以A10為直角頂點的等腰直角三角形有6個,
共有32個.

也可以從三角形邊長分析:①以直角邊長為1的18個;②直角邊長為2的有2個;③直角邊長為 的有10個;④直角邊長為的有2個,
共32個,
故答案為32.
點評:此題考查了對正方形性質(zhì)的掌握情況和同學(xué)們的探索能力,難度不大,但容易漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(02)(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標(biāo)系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關(guān)于原點O的對稱點A2、B2(應(yīng)保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設(shè)線段AB兩端點的坐標(biāo)分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最小?若存在,求出點C的坐標(biāo)(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標(biāo)系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關(guān)于原點O的對稱點A2、B2(應(yīng)保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設(shè)線段AB兩端點的坐標(biāo)分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最小?若存在,求出點C的坐標(biāo)(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標(biāo)系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關(guān)于原點O的對稱點A2、B2(應(yīng)保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2
(3)設(shè)線段AB兩端點的坐標(biāo)分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最。咳舸嬖,求出點C的坐標(biāo)(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2003•泉州)如圖,在離鐵塔93米的A處,用測角器測得塔頂?shù)难鼋菫椤螧AF,已知測角器高AD=1.55米,請你解答以下兩小題中的任意一個小題(若兩個小題都做,按第(1)小題評分).
(1)若∠BAF=31°,求鐵塔高BE(精確到0.01米).
(2)若∠BAF=30°,求鐵塔高BE(精確到0.01米),提供參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:解答題

(2003•泉州)如圖,已知:AC=AD,BC=BD,
求證:∠1=∠2.

查看答案和解析>>

同步練習(xí)冊答案