【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是拋物線上的動(dòng)點(diǎn),且滿足,求出點(diǎn)的坐標(biāo);
(3)連接,點(diǎn)是軸一動(dòng)點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn),若以、、、為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
備用圖
【答案】(1);(2),,,;(3),,
【解析】
(1)由待定系數(shù)法求出解析式即可;
(2)先求出點(diǎn)C坐標(biāo),可得OA=OC=3,由面積關(guān)系列出方程即可求解;
(3)分兩種情況討論,利用平行四邊形的性質(zhì)可求解;
解:
(1)∵拋物線經(jīng)過(guò)點(diǎn)A(-3,0),點(diǎn)B(1,0),
∴,
解得:,
∴拋物線的解析式為:,
∵拋物線的解析式為:,與y軸交于點(diǎn)C,
∴點(diǎn)C坐標(biāo)為(0,3),
即OA=OC=3;
(2)過(guò)點(diǎn)P作PM⊥AO于點(diǎn)M,PN⊥CO于點(diǎn)N,
設(shè)P(,),
∵ ,
∴,
∵AO=3,CO=3,
∴PM=2PN,即,
當(dāng)點(diǎn)P在第一、三象限時(shí),,
解得,,;
∴,,
當(dāng)點(diǎn)P在第二、四象限時(shí),,
解得,;
∴,;
(3)若BC為邊,且四邊形BCFE是平行四邊形,
∴CF∥BE,
∴點(diǎn)C與點(diǎn)F縱坐標(biāo)相等,
∴,
解得,(舍去),
∴點(diǎn)F(-2,3),
若BC為邊,且四邊形BCFE是平行四邊形,
∴BE與CF互相平分,
∵BE中點(diǎn)縱坐標(biāo)為0,且點(diǎn)C縱坐標(biāo)為3,
∴點(diǎn)F的縱坐標(biāo)為-3,
∴,
解得,
∴,,
∴或,
若BC為對(duì)角線,則四邊形BECF是平行四邊形,
∴BC與EF互相平分,
∴BC中點(diǎn)縱坐標(biāo)為,且點(diǎn)E的縱坐標(biāo)為0,
∴點(diǎn)F的縱坐標(biāo)為3,
∴點(diǎn)F(-2,3),
綜上所述,點(diǎn)F坐標(biāo)為:,,;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A.C分別在x軸、y軸上,反比例函數(shù)的圖象與正方形的兩邊AB、BC分別交于點(diǎn)M、N,ND⊥x軸,垂足為D,連接OM、ON、MN.
下列結(jié)論:
①△OCN≌△OAM;
②ON=MN;
③四邊形DAMN與△MON面積相等;
④若∠MON=45°,MN=2,則點(diǎn)C的坐標(biāo)為.
其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓的直徑,點(diǎn)D在半圓弧上,過(guò)點(diǎn)D作AB的平行線與過(guò)點(diǎn)A半圓的切線交于點(diǎn)C,點(diǎn)E在AB上,若DE垂直平分BC,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為x=1的拋物線經(jīng)過(guò)A(﹣1,0),B(2,﹣3)兩點(diǎn).
(1)求拋物線的解析式;
(2)P是拋物線上的動(dòng)點(diǎn),連接PO交直線AB于點(diǎn)Q,當(dāng)Q是OP中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);
(3)C在直線AB上,D在拋物線上,E在坐標(biāo)平面內(nèi),以B,C,D,E為頂點(diǎn)的四邊形為正方形,直接寫(xiě)出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,B,C的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),C(0,1)請(qǐng)解答下列問(wèn)題:
(1)△ABC與△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱,畫(huà)出△A1B1C1并直接寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫(huà)出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時(shí)掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按如下方法,將△ABC的三邊縮小到原來(lái)的,如圖,任取一點(diǎn)O,連結(jié)AO,BO,CO,并取它們的中點(diǎn)D、E、F,得△DEF;則下列說(shuō)法錯(cuò)誤的是( 。
A.點(diǎn)O為位似中心且位似比為1:2
B.△ABC與△DEF是位似圖形
C.△ABC與△DEF是相似圖形
D.△ABC與△DEF的面積之比為4:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹(shù),在平臺(tái)頂C點(diǎn)測(cè)得樹(shù)頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹(shù)的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹(shù)頂A點(diǎn)的仰角β=60°,求樹(shù)高AB(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)C(0,3),拋物線的頂點(diǎn)為A(2,0),與y軸交于點(diǎn)B(0,1),F在拋物線的對(duì)稱軸上,且縱坐標(biāo)為1.點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,交直線CF于點(diǎn)H,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若點(diǎn)P在直線CF下方的拋物線上,用含m的代數(shù)式表示線段PH的長(zhǎng),并求出線段PH的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)PF﹣PM=1時(shí),若將“使△PCF面積為2”的點(diǎn)P記作“巧點(diǎn)”,則存在多個(gè)“巧點(diǎn)”,且使△PCF的周長(zhǎng)最小的點(diǎn)P也是一個(gè)“巧點(diǎn)”,請(qǐng)直接寫(xiě)出所有“巧點(diǎn)”的個(gè)數(shù),并求出△PCF的周長(zhǎng)最小時(shí)“巧點(diǎn)”的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F分別在AB,AD上,且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,下列結(jié)論:
①△AED≌△DFB;②S四邊形 BCDG=CG2;③若AF=2DF,則BG=6GF
,其中正確的結(jié)論
A.只有①②.B.只有①③.C.只有②③.D.①②③.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com