【題目】某公司計(jì)劃投資兩種產(chǎn)品,若只投資產(chǎn)品,所獲得利潤(rùn)(萬元)與投資金額(萬元)之間的關(guān)系如圖所示,若只投資產(chǎn)品,所獲得利潤(rùn)(萬元)與投資金額(萬元)的函數(shù)關(guān)系式為

1)求之間的函數(shù)關(guān)系式;

2)若投資產(chǎn)品所獲得利潤(rùn)的最大值比投資產(chǎn)品所獲得利潤(rùn)的最大值少萬元,求的值;

3)該公司籌集萬元資金,同時(shí)投資兩種產(chǎn)品,設(shè)投資產(chǎn)品的資金為萬元,所獲得的總利潤(rùn)記作萬元,若時(shí),的增大而減少,求的取值范圍.

【答案】1;(2;(3

【解析】

1)由圖象可得函數(shù)拋物線的頂點(diǎn)坐標(biāo)及經(jīng)過的點(diǎn),由待定系數(shù)法即可求解;

2)由(1)可得的最大值,由的函數(shù)解析式求出產(chǎn)品所獲得利潤(rùn)的最大值,再依據(jù)題意列方程求解即可;

3)由,依據(jù)題意由二次函數(shù)性質(zhì)可得拋物線對(duì)稱軸在30的左邊,由此得關(guān)于n的不等式求解即可.

解:(1)由圖象可知點(diǎn)是拋物線的頂點(diǎn)坐標(biāo),

設(shè)之間的函數(shù)關(guān)系式為,

點(diǎn)在拋物線上,

,

解得

之間的函數(shù)關(guān)系式為

2)由(1)得,投資產(chǎn)品所獲得利潤(rùn)的最大值為

,

投資產(chǎn)品所獲得利潤(rùn)的最大值為

由題意可得,,解得

當(dāng)時(shí)不符合題意,

3)由題意可得,

當(dāng)時(shí),的增大而減小,

解得

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中的三點(diǎn)A(10),B(10),P(0,-1),將線段AB沿y軸向上平移m(m0)個(gè)單位長(zhǎng)度,得到線段CD,二次函數(shù)ya(xh)2k的圖象經(jīng)過點(diǎn)P,CD

(1)當(dāng)m1時(shí),a______;當(dāng)m2時(shí),a______;

(2)猜想am的關(guān)系,并證明你的猜想;

(3)將線段AB沿y軸向上平移n(n0)個(gè)單位長(zhǎng)度,得到線段C1D1,點(diǎn)C1D1分別與點(diǎn)A,B對(duì)應(yīng),二次函數(shù)y2a(xh)2k的圖象經(jīng)過點(diǎn)P,C1,D1

①求nm之間的關(guān)系;

②當(dāng)COD1是直角三角形時(shí),直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)利用數(shù)學(xué)知識(shí)測(cè)量建筑物DEFG的高度.他從點(diǎn)出發(fā)沿著坡度為的斜坡AB步行26米到達(dá)點(diǎn)B處,用測(cè)角儀測(cè)得建筑物頂端的仰角為37°,建筑物底端的俯角為30°,若AF為水平的地面,側(cè)角儀豎直放置,其高度BC=1.6米,則此建筑物的高度DE約為(精確到米,參考數(shù)據(jù):)

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場(chǎng)前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30)的試銷售,售價(jià)為8/件,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象(如圖),圖中的折線ODE表示日銷售量y()與銷售時(shí)間x()之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少5件.

(1)24天的日銷售量是 件,日銷售利潤(rùn)是 元;

(2)yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)日銷售利潤(rùn)不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn) 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長(zhǎng)為,則所得正八邊形的面積為_______

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn) M 的坐標(biāo)為(4,3),點(diǎn) M 關(guān)于直線 ly=﹣x+b 的對(duì)稱點(diǎn)落在坐標(biāo)軸上,則 b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開始移動(dòng),到達(dá)點(diǎn)時(shí)停止,連接.

1)當(dāng)時(shí),判斷與優(yōu)弧的位置關(guān)系,并加以證明;

2)當(dāng)時(shí),求點(diǎn)在優(yōu)弧上移動(dòng)的路線長(zhǎng)及線段的長(zhǎng).

3)連接,設(shè)的面積為,直接寫出的取值范圍.

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A、B兩種型號(hào)的新能源汽車.上周售出1A型車和3B型車,兩種車型的銷售總額為96萬元;本周銷售2A型車和1B型車,兩種車型的銷售總額為62萬元,已知兩種型號(hào)汽車銷售價(jià)格始終不變.

1)求A、B兩種車型的銷售單價(jià)分別是多少?

2)第三周計(jì)劃售出A、B兩種型號(hào)的車共5輛,若銷售總額不少于100萬元,則B型車至少要售出多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點(diǎn)C的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為(4,﹣1),畫出△A1B1C1并寫出頂點(diǎn)AB對(duì)應(yīng)點(diǎn)A1,B1的坐標(biāo);

2)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△A2B2C2,畫出△A2B2C2

查看答案和解析>>

同步練習(xí)冊(cè)答案