【題目】如圖,已知AB是⊙O的弦,半徑OA=2cm,AOB=120°

(1)求tanOAB的值;

(2)求圖中陰影部分的面積S;

(3)在⊙O上一點(diǎn)PA點(diǎn)出發(fā),沿逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周,回到點(diǎn)A,在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,滿足SPOA=SAOB時(shí),直接寫出P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)(不考慮點(diǎn)P與點(diǎn)B重合的情形).

【答案】1;(2)(πcm2;(3P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)為 πcmπcmπcm

【解析】試題分析:(1)、根據(jù)等腰三角形的性質(zhì)求出∠OAB的角度,從而根據(jù)特殊角的三角函數(shù)值求出它的值;(2)、陰影部分的面積等于扇形AOB的面積減去△OAB的面積;(3)、本題需要分∠AOP=60°、∠AOP=120°和點(diǎn)P在弧AB上三種情況來(lái)分別進(jìn)行計(jì)算,得出答案.

試題解析:(1)、解:∵OA=OB, ∴∠OAB=OBA,

∵∠OAB= 180°120°=30°, tanOAB=tan30°=;

(2)、解:作OCABC,如圖,則AC=BC,

RtOAC中,OC=OA=1,AC=OC=, AB=2AC=2

S弓形AB=S扇形AOBSAOB=2 1=πcm2;

(3)、解:延長(zhǎng)BO交⊙OP, OP=OB, ∴此時(shí)SAOP=SAOB,

∵∠AOP=OAB+OBA=60°, ∴此時(shí)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)=πcm);

當(dāng)點(diǎn)P在弧AB上,且∠AOP=60°時(shí),時(shí)SAOP=SAOB ,

此時(shí)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)=2π2π=πcm);

當(dāng)∠AOP=120時(shí),SAOP=SAO, ∴此時(shí)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)=πcm);

綜上所述,P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)為πcmπcmπcm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“龜兔賽跑”的故事同學(xué)們非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時(shí)路程與時(shí)間的關(guān)系,請(qǐng)你根據(jù)圖中給出的信息,解決下列的問(wèn)題:

1)折線OABC表示賽跑過(guò)程中__________(填“兔子”或“烏龜”)的路程與時(shí)間的關(guān)系,賽跑的全程是_________米;

2)烏龜用了多少分鐘追上正在睡覺(jué)的兔子?

3)兔子醒來(lái),以400/分的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請(qǐng)你計(jì)算兔子中間睡覺(jué)用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的兩種型號(hào)的電器,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

種型號(hào)

種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入—進(jìn)貨成本)

1)求、兩種型號(hào)的電器的銷售單價(jià);

2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電器共50臺(tái),求種型號(hào)的電器最多能采購(gòu)多少臺(tái)?

3)在(2)中商場(chǎng)用不多于7500元采購(gòu)這兩種型號(hào)的電器共50臺(tái)的條件下,商場(chǎng)銷售完這50臺(tái)電器能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列內(nèi)容,并答題:我們知道,計(jì)算n邊形的對(duì)角線條數(shù)公式為: nn3).

如果一個(gè)n邊形共有20條對(duì)角線,那么可以得到方程nn3=20

整理得n2﹣3n﹣40=0;解得n=8n=﹣5

n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.

n=8,即多邊形是八邊形.

根據(jù)以上內(nèi)容,問(wèn):

(1)若一個(gè)多邊形共有14條對(duì)角線,求這個(gè)多邊形的邊數(shù);

(2)A同學(xué)說(shuō):我求得一個(gè)多邊形共有10條對(duì)角線,你認(rèn)為A同學(xué)說(shuō)法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)A18),B1,6),C7,6).

(1)請(qǐng)直接寫出點(diǎn)D的坐標(biāo);

(2)連接線段OBOD,BD,請(qǐng)求出△OBD的面積;

(3)若長(zhǎng)方形ABCD以每秒1個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,是否存在某一時(shí)刻,使△OBD的面積與長(zhǎng)方形ABCD的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2x軸的交點(diǎn)B(2,0)

(1)求a、b的值;

(2)過(guò)動(dòng)點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍

(3)動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長(zhǎng)的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,EGEM、FM分別平分∠AEF,BEF,EFD,則下列結(jié)論正確的有(  )

①∠DFEAEF;②∠EMF=90°;EGFM④∠AEFEGC.

A. 1個(gè)B. 2個(gè)

C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明用12元買軟面筆記本,小麗用21元買硬面筆記本.

(1)已知每本硬面筆記本比軟面筆記本貴1.2元,小明和小麗能買到相同數(shù)量的筆記本嗎?

(2)已知每本硬面筆記本比軟面筆記本貴a元,是否存在正整數(shù)a,使得每本硬面筆記本、軟面筆記本的價(jià)格都是正整數(shù),并且小明和小麗能買到相同數(shù)量的筆記本?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).如圖,四邊形ABCD都是平行四邊形,ADBC,ABCD,設(shè)它的面積為S

1)如圖①,點(diǎn)MAD上任意一點(diǎn),若BCM的面積為S1,則S1S ;

2)如圖②,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記PAB的面積為SˊPCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得SˊS〞的和與S的數(shù)量關(guān)系式為 ;

3)如圖③,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),PAB的面積為3,PBC的面積為7,求PBD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案