【題目】完成下面的證明

如圖,點E在直線DF上,點B在直線AC上,若∠AGB=EHF,C=D.

求證:∠A=F.

證明:∵∠AGB=EHF

AGB=___________(對頂角相等)

∴∠EHF=DGF

DBEC____________________________________

∴∠_________=DBA________________________________

又∵∠C=D

∴∠DBA=D

DF_________________________________________

∴∠A=F__________________________________.

【答案】 DGF 同位角相等,兩直線平行 C 兩直線平行,同位角相等 AC 內(nèi)錯角相等,兩直線平行 兩直線平行,內(nèi)錯角相等

【解析】試題分析根據(jù)對頂角相等推知同位角∠EHF=DGF,從而證得兩直線DBEC;然后由平行線的性質(zhì)知內(nèi)錯角∠DBA=D,即可根據(jù)平行線的判定定理推知兩直線DFAC;最后由平行線的性質(zhì)(兩直線平行,內(nèi)錯角相等)證得∠A=F

試題解析∵∠AGB=EHFAGB=DGF(對頂角相等),∴∠EHF=DGF

,∴DBEC(同位角相等兩直線平行),∴∠C=DBA兩直線平行,同位角相等)

又∵∠C=D(已知),∴∠DBA=D(等量代換)DFAC(內(nèi)錯角相等,兩直線平行)∴∠A=F(兩直線平行,內(nèi)錯角相等)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知AOB,作圖.

步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q;

步驟2:過點M作PQ的垂線交 于點C;

步驟3:畫射線OC.

則下列判斷:=;MCOAOP=PQ;OC平分AOB,其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,最適合采用普查的是( )

A.對某班全體學生出生月份的調(diào)查B.對全國中學生節(jié)水意識的調(diào)查

C.對某批次燈泡使用壽命的調(diào)查D.對山西省初中學生每天閱讀時間的調(diào)查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC.中,AB=BC,將△ABC繞點B順時針旋轉(zhuǎn)α度,得到△A1BC1A1BAC于點E,A1C1分別交AC、BC于點DF,下列結(jié)論:①∠CDF=α,②A1E=CF,③DF=FC,④A1F=CE.其中正確的是  (寫出正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉(zhuǎn)45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.

求證:(1)ADA′≌△CDE;

(2)直線CE是線段AA′的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,C=90°,AD平分BACBCD,DEABEAC=6,BC=8,DE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知射線CBOA,∠C=OAB,

(1)求證:ABOC;

(2)如圖2,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF.

①當∠C=110°時,求∠EOB的度數(shù).

②若平行移動AB,那么∠OBC :OFC的值是否隨之發(fā)生變化?若變化,找出變

化規(guī)律;若不變,求出這個比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Ma + 5,a3 )在y軸上,則點M的坐標為____,到x軸的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A-1,0)、B3,0)兩點,點C是拋物線與y軸的交點.

1)求拋物線的解析式和頂點坐標;

2)當0x3時,求y的取值范圍;

3)在拋物線的對稱軸上是否存在點M,使BCM是等腰三角形,若存在請直接寫出點M坐標,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案