【題目】如圖,AB為⊙O的直徑,P是BA延長(zhǎng)線上一點(diǎn),CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足為D
(1)求證:PC是⊙O的切線;
(2)求證:;
(3)過(guò)點(diǎn)A作AE∥PC交⊙O于點(diǎn)E,交CD于點(diǎn)F,連接BE,若sin∠P=,CF=5,求BE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)BE=12.
【解析】
(1)連接OC,由PC切⊙O于點(diǎn)C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB為⊙O的直徑,得到∠ABC+∠OAC=90°,由于OC=OA,證得∠OCA=∠OAC,于是得到結(jié)論;
(2)由AE∥PC,得到∠PCA=∠CAF根據(jù)垂徑定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根據(jù)等腰三角形的性質(zhì)得到CF=AF,在Rt△AFD中,AF=5,sin∠FAD=,求得FD=3,AD=4,CD=8,在Rt△OCD中,設(shè)OC=r,根據(jù)勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB為⊙O的直徑,得到∠AEB=90°,在Rt△ABE中,由sin∠EAD=,得到=,于是求得結(jié)論.
(1)證明:連接OC,
∵PC切⊙O于點(diǎn)C,
∴OC⊥PC,
∴∠PCO=90°,
∴∠PCA+∠OCA=90°,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠ABC+∠OAC=90°,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠PCA=∠ABC;
(2)解:∵AE∥PC,
∴∠PCA=∠CAF,
∵AB⊥CG,
∴弧AC=弧AG,
∴∠ACF=∠ABC,
∵∠PCA=∠ABC,
∴∠ACF=∠CAF,
∴CF=AF,
∵CF=5,
∴AF=5,
∵AE∥PC,
∴∠FAD=∠P,
∵sin∠P=,
∴sin∠FAD=,
在Rt△AFD中,AF=5,sin∠FAD=,
∴FD=3,AD=4,∴CD=8,
在Rt△OCD中,設(shè)OC=r,
∴r2=(r﹣4)2+82 ,
∴r=10,
∴AB=2r=20,
∵AB為⊙O的直徑,
∴∠AEB=90°,在Rt△ABE中,
∵sin∠EAD=,∴,
∵AB=20,
∴BE=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在矩形ABCD中,AD=2AB,點(diǎn)E在直線AD上,連接BE,CE,若BE=AD,則∠BEC的大小為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形內(nèi)一點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到線段,連接.若,,,則四邊形的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1.在邊長(zhǎng)為10的正方形中,點(diǎn)在邊上移動(dòng)(點(diǎn)不與點(diǎn),重合),的垂直平分線分別交,于點(diǎn),,將正方形沿所在直線折疊,則點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),點(diǎn)落在點(diǎn)處,與交于點(diǎn),
(1)若,求的長(zhǎng);
(2)隨著點(diǎn)在邊上位置的變化,的度數(shù)是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出的度數(shù);
(3)隨著點(diǎn)在邊上位置的變化,點(diǎn)在邊上位置也發(fā)生變化,若點(diǎn)恰好為的中點(diǎn)(如圖2),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(guò)(1,y1)(2,y2).
①若 y1>0 時(shí),則 a+b+c>0
②若 a=b 時(shí),則 y1<y2
③若 y1<0,y2>0,且 a+b<0,則 a>0
④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點(diǎn)一定在第三象限上述四個(gè)判斷正確的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春季流感爆發(fā),有一人患了流感,經(jīng)過(guò)兩輪傳染后共有人患了流感,
(1)每輪傳染中平均一個(gè)人傳染了幾個(gè)人?
(2)經(jīng)過(guò)三輪傳染后共有多少人患了流感?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過(guò)點(diǎn)(0,1),將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過(guò)點(diǎn)B作BC⊥AP交AP的延長(zhǎng)線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)BQ并延長(zhǎng)交AC于點(diǎn)F,
①當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),S△PBD×S△BCF=8?
②連接PQ并延長(zhǎng)交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0)、B(3,2)、C(0,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)沿x軸向左平移2個(gè)單位,得到△A1B1C1,不畫圖直接寫出發(fā)生變化后的點(diǎn)的坐標(biāo)。點(diǎn)的坐標(biāo)是 ;
(2)以A點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,則點(diǎn)的坐標(biāo)是 ;
(3) △A2B2C2的面積是 平方單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com