【題目】如圖,ABCD中,AE平分∠BAD交BC邊于E,EF⊥AE交CD邊于F,延長BA到點G,使AG=CF,連接GF,若BC=7,DF=3,AE=,則GF的長為__________
【答案】3.
【解析】
首先延長AE、DC相交于點M,過點A作AH⊥BC于點H,連接AC,進而得出FC的長,再利用勾股定理得出EH的長,即可得出FG的長
延長AE、DC相交于點M,過點A作AH⊥BC于點H,連接AC,
∵AB∥DM,
∴∠M=∠BAE,∠CEM=∠DAM,
而∠BAE=∠DAM,
∴∠M=∠CEM=∠DAM,
∴CE=CM,DM=AD=7,
∵∠M+∠MFE=90°=∠CEM+∠CEF,
∴∠MFE=∠CEF,
∴CF=CE=CM=FM=(MD-DF)=2,
∴AB=DC=DF+CF=5,BE=BC-CE=5,
設(shè)EH=x,可得:BH=5-x,
∵AH2=AE2-EH2=AB2-BE2,
∴10-x2=25-(5-x)2
解得:x=1,
則EH=1,AH=3,
故CH=CE+EH=3,
則AC==3,
而四邊形ACFG是平行四邊形,
故FG=AC=3.
故答案為:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題)
如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,過點C作直線l平行于AB.∠EDF=90°,點D在直線l上移動,角的一邊DE始終經(jīng)過點B,另一邊DF與AC交于點P,研究DP和DB的數(shù)量關(guān)系.
(探究發(fā)現(xiàn))
(1)如圖2,某數(shù)學(xué)興趣小組運用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點D移動到使點P與點C重合時,通過推理就可以得到DP=DB,請寫出證明過程;
(數(shù)學(xué)思考)
(2)如圖3,若點P是AC上的任意一點(不含端點A、C),受(1)的啟發(fā),這個小組過點D作DG⊥CD交BC于點G,就可以證明DP=DB,請完成證明過程;
(拓展引申)
(3)如圖4,在(1)的條件下,M是AB邊上任意一點(不含端點A、B),N是射線BD上一點,且AM=BN,連接MN與BC交于點Q,這個數(shù)學(xué)興趣小組經(jīng)過多次取M點反復(fù)進行實驗,發(fā)現(xiàn)點M在某一位置時BQ的值最大.若AC=BC=4,請你直接寫出BQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系 xOy 中,A(2,3),B(3,1),C(﹣2,﹣1).
①在圖中作出△ABC 關(guān)于 x 軸的對稱圖形△A1B1C1 并寫出 A1,B1,C1 的坐標;
②在 y 軸上畫出點 P,使 PA+PB 最。ú粚懽鞣,保留作圖痕跡)
③求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè) A 是由n×n 個有理數(shù)組成的n 行n 列的數(shù)表, 其中aij ( i,j =1,2,3,,n )表示位于第i 行第 j 列的數(shù),且aij 取值為 1 或-1.
a | a | a | |
a | a | a | |
a | a | a |
對于數(shù)表 A 給出如下定義:記 xi 為數(shù)表 A 的第i 行各數(shù)之積,y j 為數(shù)表 A 的第 j 列各數(shù)之積.令S = (x1+ x2++ x)+(y1+ y2+ y),將S 稱為數(shù)表 A 的“積和”.
(1)當(dāng)n = 4 時,對如下數(shù)表 A,求該數(shù)表的“積和” S 的值;
1 | 1 | -1 | -1 |
1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 |
-1 | -1 | 1 | 1 |
(2)是否存在一個 3×3 的數(shù)表 A,使得該數(shù)表的“積和” S =0 ?并說明理由;
(3)當(dāng)n =10 時,直接寫出數(shù)表 A 的“積和” S 的所有可能的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠BCA=90°,BC=AC,直角頂點C在y軸上,銳角頂點A在x軸上.
(1)如圖①,若點C的坐標是(0,-1),點A的坐標是(-3,0),求B點的坐標;
(2)如圖②,若x軸恰好平分∠BAC,BC與x軸交于點D,過點B作BE⊥x軸于E,問AD與BE有怎樣的數(shù)量關(guān)系,并說明理由;
(3)如圖③,直角邊AC在兩坐標軸上滑動,使點B在第四象限內(nèi),過B點作BF⊥x軸于F,在滑動的過程中,猜想OC、BF、OA之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△AB′C′;
(2)求△ABC的面積為_______;
(3)在直線l上找一點P,使PB+PC的長最短,則這個最短長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB于點D,點E在CD上,下列四個條件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,將其中兩個作為條件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com