【題目】如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2EC,給出下列四個結(jié)論:
①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正確的結(jié)論共有
A. ①②③ B. ①③④ C. ②③ D. ①②③④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從下列三個條件中:(1); (2); (3).任選兩個作為條件,另一個作為結(jié)論,書寫出一個真命題,并證明.
命題:
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AD是∠BAC的平分線,若AB=AC+CD,那么∠ACB與∠ABC有怎樣的數(shù)量關(guān)系呢?
(1)通過觀察、實驗提出猜想:∠ACB與∠ABC的數(shù)量關(guān)系,用等式表示為: .
(2)小明把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:如圖2,延長AC到F,使CF=CD,連接DF.通過三角形全等、三角形的性質(zhì)等知識進行推理,就可以得到∠ACB與∠ABC的數(shù)量關(guān)系.
想法2:在AB上取一點E,使AE=AC,連接ED,通過三角形全等、三角形的性質(zhì)等知識進行推理,就可以得到∠ACB與∠ABC的數(shù)量關(guān)系.
請你參考上面的想法,幫助小明證明猜想中∠ACB與∠ABC的數(shù)量關(guān)系(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5cm,弦AB//CD,且AB=8cm,CD=6cm,則AB與CD之間的距離為( )
A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t滿足什么條件時,△BCP為直角三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關(guān)系是_________;
②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是____________.
(2)猜想論證
當△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應(yīng)的BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com