【題目】將一張長方形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線):繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得到7條折痕,那么對(duì)折n次,可以得到___________條折痕.
【答案】2n-1.
【解析】
對(duì)前三次對(duì)折分析不難發(fā)現(xiàn)每對(duì)折1次把紙分成的部分是上一次的2倍,折痕比所分成的部分?jǐn)?shù)少1,根據(jù)對(duì)折規(guī)律求出對(duì)折n次得到的部分?jǐn)?shù),然后減1即可得到折痕條數(shù).
由圖可知,第1次對(duì)折,把紙分成2部分,1條折痕,
第2次對(duì)折,把紙分成4部分,3條折痕,
第3次對(duì)折,把紙分成8部分,7條折痕,
所以,第4次對(duì)折,把紙分成16部分,15條折痕,
…,
依此類推,第n次對(duì)折,把紙分成2n部分,2n-1條折痕.
故答案為:2n-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列說法中不正確的是( )
A. ∠1與∠AOB是同一個(gè)角B. ∠AOC也可以用∠O表示
C. ∠β=∠BOCD. 圖中有三個(gè)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB=,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E處,則線段AE的長為( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:若關(guān)于x的一元一次方程的解為,則稱該方程為“和解方程”. 例如:方程的解為,而,則方程為“和解方程”.
請(qǐng)根據(jù)上述規(guī)定解答下列問題:
(1)下列關(guān)于x的一元一次方程是“和解方程”的有________.
① ② ③
(2)已知關(guān)于x的一元一次方程是“和解方程”,求m的值;
(3)已知關(guān)于x的一元一次方程是“和解方程”,并且它的解是,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上任一點(diǎn),AB=12 cm,C、D兩點(diǎn)分別從P、B同時(shí)向A點(diǎn)運(yùn)動(dòng),且C點(diǎn)的運(yùn)動(dòng)速度為2 cm/s,D點(diǎn)的運(yùn)動(dòng)速度為3 cm/s,運(yùn)動(dòng)的時(shí)間為t s.
(1)若AP=8 cm.
①運(yùn)動(dòng)1 s后,求CD的長;
②當(dāng)D在線段PB運(yùn)動(dòng)上時(shí),試說明AC=2CD;
(2)如果t=2 s時(shí),CD=1 cm,試探索AP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平某游泳館暑期推出兩種游泳付費(fèi)方式,方式一:先購買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)20元;方式二:不購買會(huì)員證,每次游泳付費(fèi)25元.設(shè)小明計(jì)劃今年暑期游泳次數(shù)為x(x為正整數(shù)).根據(jù)題意列表:
游泳次數(shù) | 5 | 8 | 10 | … | x |
方式一的總費(fèi)用(元) | 200 | 260 | m | … | |
方式二的總費(fèi)用(元) | 125 | 200 | 250 | … |
(1)表格中的m值為 ;
(2)根據(jù)題意分別求出兩種付費(fèi)方式中與自變量x之間的函數(shù)關(guān)系式并畫出圖象;
(3)請(qǐng)你根據(jù)圖象,幫助小明設(shè)計(jì)一種比較省錢的付費(fèi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個(gè)問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.
小昊發(fā)現(xiàn),過點(diǎn)A作AF∥BC,交BE的延長線于點(diǎn)F,通過構(gòu)造△AEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).請(qǐng)回答:的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點(diǎn)P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,則BP=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com