【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.
【答案】
(1)證明:∵PQ⊥AQ,
∴∠AQP=90°=∠ABC,
在△APQ與△ABC中,
∵∠AQP=90°=∠ABC,∠A=∠A,
∴△AQP∽△ABC
(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠QPB為鈍角,
∴當△PQB為等腰三角形時,
(i)當點P在線段AB上時,如題圖1所示.
∵∠QPB為鈍角,
∴當△PQB為等腰三角形時,只可能是PB=PQ,
由(1)可知,△AQP∽△ABC,
∴ ,即 ,解得:PB= ,
∴AP=AB﹣PB=3﹣ = ;
(ii)當點P在線段AB的延長線上時,如題圖2所示.
∵∠QBP為鈍角,
∴當△PQB為等腰三角形時,只可能是PB=BQ.
∵BP=BQ,∴∠BQP=∠P,
∵∠BQP+∠AQB=90°,∠A+∠P=90°,
∴∠AQB=∠A,
∴BQ=AB,
∴AB=BP,點B為線段AP中點,
∴AP=2AB=2×3=6.
綜上所述,當△PQB為等腰三角形時,AP的長為 或6
【解析】(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△AQP∽△ABC;(2)當△PQB為等腰三角形時,有兩種情況,需要分類討論.(i)當點P在線段AB上時,如題圖1所示.由三角形相似(△AQP∽△ABC)關系計算AP的長;(ii)當點P在線段AB的延長線上時,如題圖2所示.利用角之間的關系,證明點B為線段AP的中點,從而可以求出AP.
【考點精析】本題主要考查了等腰三角形的性質和直角三角形斜邊上的中線的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使B點落在AC邊上的B′處,則∠CDB′等于( )
A.40°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD,點F為正方形ABCD內一點,△BFC逆時針旋轉后能與△BEA重合.
(1)旋轉中心是點 ,旋轉角度為 度;
(2)判斷△BEF的形狀為 ;
(3)若∠BFC=90°,說明AE∥BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖 1,AB∥CD,直線 EF 交 AB 于點 E,交 CD 于點 F,點 G 在 CD 上,點 P在直線 EF 左側,且在直線 AB 和 CD 之間,連接 PE,PG.
(1) 求證: ∠EPG=∠AEP+∠PGC;
(2) 連接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度數(shù).
(3) 如圖 2,若 EF 平分∠PEB,∠PGC 的平分線所在的直線與 EF 相交于點 H,則∠EPG 與∠EHG之間的數(shù)量關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將1, , , 按下列方式排列.若規(guī)定(m,n)表示第m排從左向右第n個數(shù),則(5,4)與(15,2)表示的兩數(shù)之積是 _________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關系式;
(4)在(3)的條件下,當點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若x=1,y=,則x2+4xy+4y2的值是( )
A. 2 B. 4 C. 32 D. 12
【答案】B
【解析】解析:x2+4xy+4y2=(x+2y)2==4.故選B.
【題型】單選題
【結束】
9
【題目】下列因式分解,正確的是( )
A. x2y2-z2=x2(y+z)(y-z) B. -x2y+4xy-5y=-y(x2+4x+5)
C. (x+2)2-9=(x+5)(x-1) D. 9-12a+4a2=-(3-2a)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com