(本小題滿分9分)
已知:△ABC是任意三角形.
⑴如圖1所示,點M、P、N分別是邊AB、BC、CA的中點.求證:∠MPN=∠A.
⑵如圖2所示,點M、N分別在邊AB、AC上,且,,點P1、P2是邊BC的三等分點,你認為∠MP1N+∠MP2N=∠A是否正確?請說明你的理由.
⑶如圖3所示,點M、N分別在邊AB、AC上,且,,點P1、P2、……、P2009是邊BC的2010等分點,則∠MP1N+∠MP2N+……+∠MP2009N=____________.
(請直接將該小問的答案寫在橫線上.)
(1)略
(2)正確
(3)∠A
解析:⑴證明:∵點M、P、N分別是AB、BC、CA的中點,
∴線段MP、PN是△ABC的中位線,
∴MP∥AN,PN∥AM, 1分
∴四邊形AMPN是平行四邊形, 2分
∴∠MPN=∠A. 3分
⑵∠MP1N+∠MP2N=∠A正確. 4分
如圖所示,連接MN, 5分
∵,∠A=∠A,
∴△AMN∽△ABC,
∴∠AMN=∠B,,
∴MN∥BC,MN=BC, 6分
∵點P1、P2是邊BC的三等分點,
∴MN與BP1平行且相等,MN與P1P2平行且相等,MN與P2C平行且相等,
∴四邊形MBP1N、MP1P2N、MP2CN都是平行四邊形,
∴MB∥NP1,MP1∥NP2,MP2∥AC,
7分
∴∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A,
∴∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A.
8分
⑶∠A. 9分
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2010-2011學年河南省周口市初三下學期第二十七章相似三角形檢測題 題型:解答題
(本小題滿分7分)
已知:關(guān)于的一元二次方程.
(1)若方程有兩個不相等的實數(shù)根,求的取值范圍;
(2)在(1)的條件下,求證:無論取何值,拋物線y=總過軸上的一個固定點;
(3)若為正整數(shù),且關(guān)于的一元二次方程有兩個不相等的整數(shù)根,把拋物線y=向右平移4個單位長度,求平移后的拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com