閱讀下列材料:
我們知道|x|的幾何意義是在數軸上數x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數軸上數x與數0對應點之間的距離;
這個結論可以推廣為|x1-x2|表示在數軸上數x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2,容易得出,在數軸上與原點距離為2的點對應的數為±2,即該方程的x=±2;
例2:解不等式|x-1|>2,如圖,在數軸上找出|x-1|=2的解,即到1的距離為2的點對應的數為-1,3,
則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5,由絕對值的幾何意義知,該方程表示求在數軸上與1和-2的距離之和為5的點對應的x的值,在數軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊,若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3。
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為____;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍。