【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是邊AB上一動(dòng)點(diǎn),沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點(diǎn)F,若△AB′F為直角三角形,則AE的長(zhǎng)為_____.
【答案】或.
【解析】
分兩種情形分別畫出圖形求解即可.
解:如圖1中,當(dāng)∠AFB′=90°時(shí).
在Rt△ABC中,∵∠B=30°,AC=3,
∴AB=2AC=6,BC=3,
∵BD=CD,
∴BD=CD=,
∵∠BFD=90°,
∴∠BDF=60°,
∴∠EDB=∠EDF=30°,
∴∠B=∠EDB=30°,
∴EB=ED,設(shè)BE=DE=x,
在Rt△EDF中,DE=2EF,
∴x=2(﹣x),
∴x=,
∴AE=6﹣=.
如圖2中,當(dāng)∠AB′F=90°時(shí),作EH⊥AB′交AB′的延長(zhǎng)線于H.設(shè)AE=x.
∵AD=AD,CD=DB′,
∴Rt△ADC≌Rt△ADB′(HL),
∴AC=AB′=3,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(6﹣x),EH=B′H=(6﹣x),
在Rt△AEH中,∵EH2+AH2=AE2,
∴[(6﹣x)]2+[3+(6﹣x)]2=x2,
解得x=,
綜上所述,滿足條件的AE的值為或.
故答案為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一種學(xué)生用計(jì)算器,進(jìn)價(jià)為每臺(tái)20元,售價(jià)為每臺(tái)30元時(shí),每周可賣160臺(tái),如果每臺(tái)售價(jià)每上漲2元,每周就會(huì)少賣20臺(tái),但廠家規(guī)定最高每臺(tái)售價(jià)不能超過33元,當(dāng)計(jì)算器定價(jià)為多少元時(shí),商場(chǎng)每周的利潤(rùn)恰好為1680元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是( 。
A. 小明做了3次擲圖釘?shù)膶?shí)驗(yàn),發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是
B. 某彩票的中獎(jiǎng)概率是5%,那么買100張彩票一定有5張中獎(jiǎng)
C. 某射擊運(yùn)動(dòng)員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是
D. 小明做了3次擲均勻硬幣的實(shí)驗(yàn),其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C,與AB交與點(diǎn)D,則△COD的面積的值等于_____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M,N分別是正方形ABCD的邊BC,CD上的點(diǎn),且BM=CN, AM與BN交于點(diǎn)P,試探索AM與BN的關(guān)系.
(1)數(shù)量關(guān)系_____________________,并證明;
(2)位置關(guān)系_____________________,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從“愛國(guó)”“敬業(yè)”“誠(chéng)信”“友善”四個(gè)主題選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,選擇“愛國(guó)”主題所對(duì)應(yīng)的圓心角是多少;
(4)如果該校九年級(jí)共有1200名學(xué)生,請(qǐng)估計(jì)選擇以“友善”為主題的九年級(jí)學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com