在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以BC邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,求所得的幾何體的側(cè)面積(結(jié)果保留π).
分析:易得此幾何體為圓錐.由勾股定理得AB=5,求得以AC為半徑的圓的周長(zhǎng),再根據(jù)扇形面積公式求母線長(zhǎng)為5的側(cè)面面積.
解答:解:∵∠C=90°,AC=3cm,BC=4cm,
∴AB=
AC2+BC2
=5,
以AC為半徑的圓的周長(zhǎng)=2×π×3=6πcm,
∴圓錐側(cè)面展開是扇形,S扇形=
1
2
×6π×5=15πcm2
點(diǎn)評(píng):本題利用了勾股定理,圓面積公式,扇形的面積公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案