過(guò)兩點(diǎn)可確定一條直線,過(guò)A、B、C三點(diǎn),可確定直線的條數(shù)是( )

A1    B3   C1條或2   D1條或3

 

答案:D
提示:

考慮三點(diǎn)共線和三點(diǎn)不共線的情況。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀以下材料并填空:平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線上,過(guò)這些點(diǎn)作直線一共能作出多少條不同的直線?
分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線,當(dāng)有5個(gè)點(diǎn)時(shí)可連成10條直線…
推導(dǎo):平面上有n個(gè)點(diǎn),因?yàn)閮牲c(diǎn)可確定一條直線,所以每個(gè)點(diǎn)都可與除本身之外的其余(n-1)個(gè)點(diǎn)確定一條直線,即共有
n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實(shí)際總條數(shù)為
n(n-1)
2

試結(jié)合以上信息,探究以下問(wèn)題:
平面上有n(n≥3)個(gè)點(diǎn),任意3個(gè)點(diǎn)不在同一直線上,過(guò)任意3點(diǎn)作三角形,一共能作出多少個(gè)不同的三角形?
分析:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù) sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù) 可連成的三角形的個(gè)數(shù)
3
1
1
4
4
4
5
10
10
n
n(n-1)(n-2)
6
n(n-1)(n-2)
6
推導(dǎo):
平面上有n個(gè)點(diǎn),過(guò)不在同一直線上的三點(diǎn)可以確定1個(gè)三角形,取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法.取第三個(gè)點(diǎn)C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個(gè)三角形,故應(yīng)除以6,即Sn=
n(n-1)(n-2)
6
平面上有n個(gè)點(diǎn),過(guò)不在同一直線上的三點(diǎn)可以確定1個(gè)三角形,取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法.取第三個(gè)點(diǎn)C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個(gè)三角形,故應(yīng)除以6,即Sn=
n(n-1)(n-2)
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

閱讀以下材料并填空:平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線上,過(guò)這些點(diǎn)作直線一共能作出多少條不同的直線?
分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線,當(dāng)有5個(gè)點(diǎn)時(shí)可連成10條直線…
推導(dǎo):平面上有n個(gè)點(diǎn),因?yàn)閮牲c(diǎn)可確定一條直線,所以每個(gè)點(diǎn)都可與除本身之外的其余(n-1)個(gè)點(diǎn)確定一條直線,即共有
n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實(shí)際總條數(shù)為數(shù)學(xué)公式
試結(jié)合以上信息,探究以下問(wèn)題:
平面上有n(n≥3)個(gè)點(diǎn),任意3個(gè)點(diǎn)不在同一直線上,過(guò)任意3點(diǎn)作三角形,一共能作出多少個(gè)不同的三角形?
分析:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù) sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù)可連成的三角形的個(gè)數(shù)
3________
4________
5________
n________
推導(dǎo):________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇期末題 題型:解答題

閱讀以下材料并填空:平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線上,過(guò)這些點(diǎn)作直線一共能作出多少條不同的直線?分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線,當(dāng)有5個(gè)點(diǎn)時(shí)可連成10條直線…推導(dǎo):平面上有n個(gè)點(diǎn),因?yàn)閮牲c(diǎn)可確定一條直線,所以每個(gè)點(diǎn)都可與除本身之外的其余(n﹣1)個(gè)點(diǎn)確定一條直線,即共有n(n﹣1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實(shí)際總條數(shù)為
試結(jié)合以上信息,探究以下問(wèn)題:平面上有n(n≥3)個(gè)點(diǎn),任意3個(gè)點(diǎn)不在同一直線上,過(guò)任意3點(diǎn)作三角形,一共能作出多少個(gè)不同的三角形?
分析:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù) sn,發(fā)現(xiàn):(填下表)
推到:                                                                 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

過(guò)兩點(diǎn)可確定一條直線,過(guò)A、B、C三點(diǎn),可確定直線的條數(shù)是()


  1. A.
    1條
  2. B.
    3條
  3. C.
    1條或2條
  4. D.
    1條或3條

查看答案和解析>>

同步練習(xí)冊(cè)答案