【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x>0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為( 。
A. 2B. 3C. 4D. 6
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是垂直于水平面的建筑物.為測量AB的高度,小紅從建筑物底端B點出發(fā),沿水平方向行走了52米到達點C,然后沿斜坡CD前進,到達坡頂D點處,.在點D處放置測角儀,測角儀支架DE高度為0.8米,在E點處測得建筑物頂端A點的仰角為(點A,B,C,D,E在同一平面內(nèi)).斜坡CD的坡度(或坡比),那么建筑物AB的高度約為( )
(參考數(shù)據(jù),,)
A.65.8米B.71.8米C.73.8米D.119.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)且),已知當(dāng)時,;當(dāng)時,,請對該函數(shù)及其圖像進行如下探究:
(1)求函數(shù)的解析式;
(2)如圖,請在平面直角坐標(biāo)系中,畫出該函數(shù)的圖像;
(3)結(jié)合所畫函數(shù)圖像,請寫出該函數(shù)的一條性質(zhì);
(4)解決問題:若函數(shù)與至少有兩個公共點,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且,CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH.
(1)求證:BD是⊙O的切線;(2)當(dāng)OB=2時,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲樓AB高20米,乙樓CD高10米,兩棟樓之間的水平距離BD=30m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小明在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求該電視塔的高度EF.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,與軸交于點,將點向右平移兩個單位長度,得到點,點在拋物線上.
(1)①直接寫出拋物線的對稱軸是__________;
②用含的代數(shù)式表示;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.點恰好為整點,若拋物線在點、之間的部分與線段所圍成的區(qū)域內(nèi)(不含邊界)恰有兩個整點,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在BC邊上,點F在BC延長線上,且∠CDF =∠BAE.
(1)求證:四邊形AEFD是平行四邊形;
(2)若DF=3,DE=4,AD=5,求CD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com