【題目】如圖,AB=AC,BD⊥AC于D,CE⊥AB于E,CE,BD相交于點(diǎn)O,則圖中全等的直角三角形有__對(duì).
【答案】4
【解析】
首先證明△ACE≌△ABD可得AD=AE,EC=BD,根據(jù)等式的性質(zhì)可得AB-AE=AC-AD,即EB=DC;再證明△EBC≌△DCB,△EOB≌△DOC即可.
解:△ACE≌△ABD,△EBC≌△DCB,△EOB≌△DOC,
∵BD、CE為高,
∴∠ADB=∠AEC=,90°,
在△AEC和△ADB中,
∠A=∠A,∠AEC=∠ADB,AB=AC,
∴△ACE≌△ABD(ASA);
∴AD=AE,EC=BD,
∴AB-AE=AC-AD,
即EB=DC,
在△EBC和△DCB中,
EB=DC,BC=BC,EC=DB,∴△EBC≌△DCB(SSS),
在△EOB和△DOC中,
EB=DC,∠OEB=∠ODC,∠EOB=∠DOC,
∴△EOB≌△DOC(AAS).
故答案為:3.
“點(diǎn)睛”本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程,是一元二次方程的是( )
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名大學(xué)生去距學(xué)校36千米的某鄉(xiāng)鎮(zhèn)進(jìn)行社會(huì)調(diào)查.他們從學(xué)校出發(fā),騎電動(dòng)車(chē)行駛20分鐘時(shí)發(fā)現(xiàn)忘帶相機(jī),甲下車(chē)前往,乙騎電動(dòng)車(chē)按原路返回.乙取相機(jī)后(在學(xué)校取相機(jī)所用時(shí)間忽略不計(jì)),騎電動(dòng)車(chē)追甲.在距鄉(xiāng)鎮(zhèn)13.5千米處追上甲后同車(chē)前往鄉(xiāng)鎮(zhèn).乙電動(dòng)車(chē)的速度始終不變.設(shè)甲與學(xué)校相距y甲(千米),乙與學(xué)校相離y乙(千米),甲離開(kāi)學(xué)校的時(shí)間為t(分鐘).y甲、y乙與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:
(1)電動(dòng)車(chē)的速度為 千米/分鐘;
(2)甲步行所用的時(shí)間為 分;
(3)求乙返回到學(xué)校時(shí),甲與學(xué)校相距多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2+bx+c過(guò)點(diǎn)(2,﹣2)和(﹣1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,D為AB的中點(diǎn),點(diǎn)P在線段上以3 cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以相同速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),一個(gè)點(diǎn)到達(dá)終點(diǎn)后另一個(gè)點(diǎn)也停止運(yùn)動(dòng).當(dāng)△BPD與△CQP全等時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△A′B′C,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在AB上,求BB′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=cm,∠BAC=120°,點(diǎn)P在BC上從C向B運(yùn)動(dòng),點(diǎn)Q在AB、AC上沿B→A→C運(yùn)動(dòng),點(diǎn)P、Q分別從點(diǎn)C、B同時(shí)出發(fā),速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),則當(dāng)運(yùn)動(dòng)時(shí)間t=_____s時(shí),△PAQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△OA1B1 .
(1)線段OA1的長(zhǎng)是 , ∠AOB1的度數(shù)是;
(2)連接AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1的位置所經(jīng)過(guò)的路線的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com