【題目】在四邊形OABC中,AB∥OC,∠OAB=90°, ∠OCB=60°,AB=2,OA=2.
(1)如圖①,連接OB,請(qǐng)直接寫出OB的長(zhǎng)度;
(2)如圖②,過(guò)點(diǎn)O作OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,△OPQ的面積為S(平方單位).
①求S與t之間的函數(shù)關(guān)系式;
②設(shè)PQ與OB交于點(diǎn)M,當(dāng)△OPM為等腰三角形時(shí),試求出△OPQ的面積S的值.
【答案】(1)4(2);①S=-t2+t(0<t<2); ②或2.
【解析】試題分析:(1)利用勾股定理即可得;
(2)①首先表示出線段PO,作PE⊥OA于點(diǎn)E,利用銳角三角函數(shù)表示出線段PE的長(zhǎng),然后利用三角形的面積計(jì)算方法得到有關(guān)S于t的函數(shù)關(guān)系式即可;
②分情況討論即可得.
試題解析:(1)∵∠OAB=90°,∴OB=;
(2)①∵AB=2,OB=4,∠OAB=90°,∴∠ABO=60°,又∵∠OCB=60°,
∴△BOC為等邊三角形,∴OH=OBcos30°=4×=2,
∴OP=OH-PH=2-t,
如圖①,過(guò)P點(diǎn)作PE⊥OA,垂足為點(diǎn)E,
圖①
則EP=OPcos30°=3-t,
∴S=·OQ·EP=·t·(3-t)=-t2+t(0<t<2);
②若△OPM為等腰三角形:
(ⅰ)若OM=PM,如圖②,則∠MPO=∠MOP=∠POC,
圖②
∴PQ∥OC,過(guò)點(diǎn)P作PK⊥OC于點(diǎn)K,
∴OQ=PK=,即t=-,解得t=,
此時(shí)S=-×()2+×=;
(ⅱ)若OP=OM,如圖③,則∠OPM=∠OMP=75°,
圖③
∴∠OQP=∠OMP-∠QOM=75°-30°=45°,此時(shí)EQ=EP,即t-(-)=3-t,
解得t=2,
此時(shí)S=-×22+×2=3-;
(ⅲ)若OP=PM,∠POM=∠PMO=∠AOB,
則PQ∥OA,此時(shí)點(diǎn)Q在AB上,不滿足題意,舍去,
綜上所述,當(dāng)△OPM為等腰三角形時(shí),△OPM的面積為或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過(guò)點(diǎn)H作CD的垂線,交BD于點(diǎn)E,連接AE.
(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是 ;
(2)如圖2,將△DHE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線上時(shí),求證:AE+EH=CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初一(1)班針對(duì)“你最喜愛(ài)的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
男、女生所選項(xiàng)目人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 男生(人數(shù)) | 女生(人數(shù)) |
機(jī)器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根據(jù)以上信息解決下列問(wèn)題:
(1)m=_____,n=_____;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為_____°;
(3)從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹(shù)狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有若干邊長(zhǎng)為1的正方形卡片,第1次并排擺2張黑色卡片,鋪成一個(gè)長(zhǎng)方形;第2次在黑色卡片上方和右側(cè)擺白色卡片,所有卡片鋪成了一個(gè)較大的長(zhǎng)方形;第3次繼續(xù)在白色卡片上方和右側(cè)擺黑色卡片,所有卡片鋪成了一個(gè)更大的長(zhǎng)方形;以此類推,請(qǐng)解決以下問(wèn)題:
(1)僅第10次要用去______張卡片,擺完第10次后,總共用去_______張卡片.
(2)你知道 2+4+6+8+……+2n的結(jié)果是多少嗎?寫出結(jié)果,結(jié)合圖形規(guī)律說(shuō)明你的理由.
(3)求出從第51次至第100次所擺卡片的數(shù)量之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
(1)求證:AM=AD+MC.
(2)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】滴滴公布了新的滴滴快車計(jì)價(jià)規(guī)則,車費(fèi)由“總里程費(fèi)+總時(shí)長(zhǎng)費(fèi)”兩部分構(gòu)成,不同時(shí)段收費(fèi)標(biāo)準(zhǔn)不同,具體收費(fèi)標(biāo)準(zhǔn)如下表,如果車費(fèi)不足起步價(jià),則按起步價(jià)收費(fèi).
時(shí)間段 | 里程費(fèi)(元/千米) | 時(shí)長(zhǎng)費(fèi)(元/分鐘) | 起步價(jià)(元) |
06:00-10:00 | 1.80 | 0.80 | 14.00 |
10:00-17:00 | 1.45 | 0.40 | 13.00 |
17:00-21:00 | 1.50 | 0.80 | 14.00 |
21:00-6:00 | 0.80 | 0.80 | 14.00 |
(1)小明早上7:10乘坐滴滴快車上學(xué),行車?yán)锍?/span>6千米,行車時(shí)間10分鐘,則應(yīng)付車費(fèi)多少元?
(2)小云17:10放學(xué)回家,行車?yán)锍?/span>2千米,行車時(shí)間12分鐘,則應(yīng)付車費(fèi)多少元?
(3)下晚自習(xí)后小明乘坐滴滴快車回家,20:45在學(xué)校上車,由于堵車,平均速度是千米/小時(shí),15分鐘后走另外一條路回家,平均速度是千米/小時(shí),10分鐘后到家,則他應(yīng)付車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題:
(1)2+(﹣1)=_____.
(2)﹣10+3=_____.
(3)(﹣2)×(﹣3)=_____.
(4)12÷(﹣3)=_____.
(5)(﹣3)2×=_____.
(6)1÷5×()=_____.
(7)﹣3a2+2a2=_____.
(8)﹣2(x﹣1)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)23﹣6×(﹣3)+2×(﹣4);
(2)﹣1.53×0.75﹣0.53×();
(3)﹣14+|3﹣5|﹣16÷(﹣2)×
(4)﹣14+×[2×(﹣6)﹣(﹣4)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn):
(1)計(jì)算:(-2)×÷(-)×4+(- 2)3;
(2)計(jì)算:(-1)2019-(1-)÷3×[3-(-3)2];
(3)化簡(jiǎn):4a2- 2(a2- b2)- 3(a2+ b2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com