如圖1,在△ABC中,∠ABC的平分線BF與∠ACB的平分線CF相交于F,過點F作DE∥BC,交直線AB于點D,交直線AC于點E,通過上述條件,我們不難發(fā)現(xiàn):BD+CE=DE;如圖2,∠ABC的平分線BF與∠ACB的外角平分線CF相交于F,過點F作DE∥BC,交直線AB于點D,交直線AC于點E,根據(jù)圖1所得的結(jié)論,試猜想BD,CE,DE之間存在什么關(guān)系?( 。
分析:由∠ABC的平分線BF與∠ACB的外角平分線CF相交于F,過點F作DE∥BC,易證得△BDF與△CEF是等腰三角形,繼而可求得答案.
解答:解:如圖2,∵DE∥BC,
∴∠DFB=∠CBF,∠EFC=∠1,
∵∠ABC的平分線BF與∠ACB的外角平分線CF相交于F,
∴∠DBC=∠CBF,∠1=∠2,
∴∠DBC=∠DFB,∠EFC=∠2,
∴BD=DF,EF=CE,
∵DF=DE+EF,
∴BD=DE+CE.
即BD-CE=DE.
故選A.
點評:此題考查了等腰三角形的性質(zhì)與判定.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
(1)求證:AD是圓O的切線;
(2)當∠BAC=90°時,求證:
PE
CE
=
1
2
;
(3)如圖2,當PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案