(2007•哈爾濱)如圖1,在正方形ABCD中,對角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著BA的延長線運(yùn)動(dòng),點(diǎn)C1與A1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A1也隨之停止運(yùn)動(dòng).如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請猜想E1F1,A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時(shí),求BD的長.

【答案】分析:(1)過F作FM⊥AB于點(diǎn)M,首先證明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.
(2)連接F1C1,過點(diǎn)F1作F1P⊥A1B于點(diǎn)P,F(xiàn)1Q⊥BC于點(diǎn)Q,證明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化簡為E1F1+A1C1=AB.
(3)設(shè)PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=
解答:(1)證明:如圖1,過點(diǎn)F作FM⊥AB于點(diǎn)M,在正方形ABCD中,AC⊥BD于點(diǎn)E.
∴AE=AC,∠ABD=∠CBD=45°,
∵AF平分∠BAC,
∴EF=MF,
又∵AF=AF,
∴Rt△AMF≌Rt△AEF,
∴AE=AM,
∵∠MFB=∠ABF=45°,
∴MF=MB,MB=EF,
∴EF+AC=MB+AE=MB+AM=AB.

(2)E1F1,A1C1與AB三者之間的數(shù)量關(guān)系:E1F1+A1C1=AB
證明:如圖2,連接F1C1,過點(diǎn)F1作F1P⊥A1B于點(diǎn)P,F(xiàn)1Q⊥BC于點(diǎn)Q,
∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1
又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,
∴A1E1=A1P,
同理Rt△QF1C1≌Rt△E1F1C1,
∴C1Q=C1E1
由題意:A1A=C1C,
∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB,
∵PB=PF1=QF1=QB,
∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,
即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,
∴E1F1+A1C1=AB.

(3)解:設(shè)PB=x,則QB=x,
∵A1E1=3,QC1=C1E1=2,
Rt△A1BC1中,A1B2+BC12=A1C12
即(3+x)2+(2+x)2=52,
∴x1=1,x2=-6(舍去),
∴PB=1,
∴E1F1=1,
又∵A1C1=5,
由(2)的結(jié)論:E1F1+A1C1=AB,
∴AB=,
∴BD=
點(diǎn)評:本題考查的是勾股定理的應(yīng)用,全等三角形的判定以及正方形的性質(zhì)等有關(guān)知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•哈爾濱)如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著BC邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)秒時(shí),點(diǎn)G停止運(yùn)動(dòng),此時(shí)直線GH與y軸交于點(diǎn)N.另一動(dòng)點(diǎn)P開始從B出發(fā),以1個(gè)單位/秒的速度沿著梯形的各邊運(yùn)動(dòng)一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點(diǎn)P可以與梯形的各頂點(diǎn)重合).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)M為直線HE上任意一點(diǎn)(點(diǎn)M不與點(diǎn)H重合),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中,求出所有能使∠PHM與∠HNE相等的t的值.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(03)(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案