20.已知$\frac{\root{4}{x+2}}{x}$在實數(shù)范圍有意義,則x的取值范圍是-≤x<0,或x>0.

分析 根據(jù)被開方數(shù)非負數(shù),分母不能為零,可得x的取值范圍.

解答 解:由$\frac{\root{4}{x+2}}{x}$在實數(shù)范圍有意義,得
x+2≥0,且x≠0,
解得-≤x<0,或x>0.
故答案為:-≤x<0,或x>0.

點評 本題考查了實數(shù),利用被開方數(shù)非負數(shù),分母不能為零得出不等式組是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.整理一批圖書,甲單獨做要10h完成,乙單獨做要15h完成,甲先單獨做8h,后因有其他任務(wù)調(diào)離,余下的任務(wù)由乙單獨完成,那么乙還要多少小時完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如果一點在由兩條公共端點的線段組成的一條折線上且把這條折線分成長度相等的兩部分,這點叫做這條折線的“折中點”.如果點D是折線A-C-B的“折中點”,請解答以下問題:
(1)已知AC=m,BC=n.
當m>n時,點D在線段AC上;
當m=n時,點D與C重合;
當m<n時,點D在線段BC上;
(2)若E為線段AC中點,EC=4,CD=3,求CB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算題
(1)-4-28-(-29)+(-24)
(2)-14-(1-0.5)+3×(1-7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知線段AB=4cm,延長AB到C,使得BC=$\frac{1}{2}$AB,反向延長AC到D,使AB:AD=2:3,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.在一節(jié)數(shù)學(xué)探究課上,王老師出示了下列命題:
已知正數(shù)a和b①若a+b=2,$\sqrt{ab}$≤1;②若a+b=3,則有$\sqrt{ab}$≤$\frac{3}{2}$;③若a+b=6,則$\sqrt{ab}$≤3.讀完上述三個命題后,老師告訴同學(xué)們上述命題均為真命題:試猜想:若a+b=7,則$\sqrt{ab}$≤$\frac{7}{2}$;若a+b=n,則$\sqrt{ab}$≤$\frac{n}{2}$.我們可以得到一個規(guī)律:$\sqrt{ab}$≤$\frac{a+b}{2}$(a、b為正數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=y1-y2,其中y1與x成正比例,y2與x-2成反比例,且當x=1時,y=1;當x=3時,y=5,求當x=4時y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.在$\frac{1}{3}$$\sqrt{3ab}$,$\sqrt{(x+1)(x-1)}$,$\sqrt{0.5+0.75}$,$\sqrt{2a^3}$,$\sqrt{20}$,$\sqrt{a^2+b^2}$中,最簡二次根式是$\frac{1}{3}$$\sqrt{3ab}$,$\sqrt{(x+1)(x-1)}$,$\sqrt{a^2+b^2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.用代入消元法解下列方程組;
(1)$\left\{\begin{array}{l}{x=2y}\\{2y+x=16}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y=3}\\{2x+3y=15}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案