如圖所示,在邊長為2的正三角形ABC中,E、FG分別為AB、ACBC的中點,點P為線段EF上一個動點,連接BP、GP,則△PBG的周長的最小值是      .

 3   解析:要使△PBG的周長最小,而BG=1一定,只要使BP+PG最短即可.
連接AGEFM
∵ △ABC是等邊三角形,EF、G分別為AB、AC、BC的中點,
AGBC.又EFBC,∴ AGEFAM=MG,
AG關(guān)于EF對稱,∴ P點與E重合時,BP+PG最小,

即△PBG的周長最小,
最小值是2+1=3.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在邊長為a的正方形中,剪去一個邊長為b的小正方形(a>b),將余下部分拼成一個梯形,根據(jù)兩個圖形陰影部分面積的關(guān)系,可以得到一個關(guān)于a、b的恒等式為( 。
精英家教網(wǎng)
A、(a-b)2=a2-2ab+b2B、(a+b)2=a2+2ab+b2C、a2-b2=(a+b)(a-b)D、a2+ab=a(a+b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b),再把剩余的部分剪拼成一個矩形,通過計算圖形(陰影部分的面積),驗證了一個等式是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后的圖形△A′B′C′,并計算對應(yīng)點B和B′之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

同步練習冊答案