【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練(各射擊10次),成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下表:
平均成績(jī)(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | c | d |
(1)填空:a= ,b= ,c= ,求出 d 的值;
(2)若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?請(qǐng)說(shuō)明理由.
【答案】(1),,,;(2)應(yīng)選乙隊(duì)員參賽.理由見(jiàn)解析.
【解析】
(1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差的定義分別計(jì)算即可解決問(wèn)題;
(2)由表中數(shù)據(jù)可知,甲,乙平均成績(jī)相等,乙的中位數(shù),眾數(shù)均大于甲,說(shuō)明乙的成績(jī)好于甲,雖然乙的方差大于甲,但乙的成績(jī)呈上升趨勢(shì),故應(yīng)選乙隊(duì)員參賽.
(1)甲的平均數(shù):(環(huán)),
乙的成績(jī),從小到大排列是3,4,6,7,7,8,8,8,9,10,排在中間的兩個(gè)數(shù)是7和8,則乙的中位數(shù)是:(環(huán)),
乙的眾數(shù):8環(huán)出現(xiàn)了3次,次數(shù)最多,乙的眾數(shù)是(環(huán)),
∵乙的平均數(shù)為:,
∴
(),
故答案為:,,,;
(2)由表中數(shù)據(jù)可知,甲,乙平均成績(jī)相等,乙的中位數(shù),眾數(shù)均大于甲,說(shuō)明乙的成績(jī)好于甲,雖然乙的方差大于甲,但乙的成績(jī)呈上升趨勢(shì),故應(yīng)選乙隊(duì)員參賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實(shí)數(shù);⑤=x-1一元二次方程的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(0,-3).
(1)如圖①所示,直線l過(guò)點(diǎn)Q(0,-1)且平行于x軸,過(guò)P點(diǎn)作PB⊥l,垂足為B,連接PA,猜想PA與PB的大小關(guān)系,并證明你的猜想.
(2)請(qǐng)利用(1)的結(jié)論解決下列問(wèn)題:
①如圖②所示,設(shè)點(diǎn)C的坐標(biāo)為(2,-5),連接PC,問(wèn)PA+PC是否存在最小值?如果存在,請(qǐng)并求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
②若過(guò)動(dòng)點(diǎn)P和點(diǎn)Q(0,-1)的直線交拋物線于另一點(diǎn)D,且PA=4AD,求直線PQ的表達(dá)式(圖③為備用圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8cm,DB=2cm.
(1)求三角形ABC向右平移的距離AD的長(zhǎng);
(2)求四邊形AEFC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù) y=-x+6的圖像與正比例函數(shù) y=2x 的圖像交于點(diǎn) A.
(1)求點(diǎn) A 的坐標(biāo);
(2)已知點(diǎn) B 在直線 y=-x+6上,且橫坐標(biāo)為5,在 x 軸上確定點(diǎn) P,使 PA+PB 的值最小,求出此時(shí) P 點(diǎn)坐標(biāo),并直接寫(xiě)出 PA+PB 的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,平面直角坐標(biāo)系中的點(diǎn)A(a,1),t=ab﹣a2﹣b2(a,b是實(shí)數(shù))
(1)若關(guān)于x的反比例函數(shù)y=過(guò)點(diǎn)A,求t的取值范圍.
(2)若關(guān)于x的一次函數(shù)y=bx過(guò)點(diǎn)A,求t的取值范圍.
(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過(guò)點(diǎn)A,求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com