【題目】天水某公交公司將淘汰某一條線路上冒黑煙較嚴(yán)重的公交車,計(jì)劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,

1)求購買A型和B型公交車每輛各需多少萬元?

2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?

【答案】(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬元.

【解析】

1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元列出方程組解決問題;

2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由購買A型和B型公交車的總費(fèi)用不超過1220萬元“10輛公交車在該線路的年均載客總和不少于650萬人次列出不等式組探討得出答案即可.

1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得

,

解得,

答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.

2)設(shè)購買A型公交車a輛,則B型公交車(10a)輛,由題意得

,

解得:,

因?yàn)?/span>a是整數(shù),

所以a6,7,8

則(10a)=4,3,2;

三種方案:

①購買A型公交車6輛,則B型公交車4輛:100×6+150×41200萬元;

②購買A型公交車7輛,則B型公交車3輛:100×7+150×31150萬元;

③購買A型公交車8輛,則B型公交車2輛:100×8+150×21100萬元;

購買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1ADBC的一張紙條,按圖1→2→3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為(   )

A.120°B.108°C.126°D.114°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,已知點(diǎn)A(0,1),點(diǎn)P在線段OA上,以AP為半徑的⊙P周長為1.點(diǎn)MA開始沿⊙P按逆時(shí)針方向轉(zhuǎn)動(dòng),射線AMx軸于點(diǎn)N(n,0),設(shè)點(diǎn)M轉(zhuǎn)過的路程為m(0m1).

(1)當(dāng)m=時(shí),n=_____

(2)隨著點(diǎn)M的轉(zhuǎn)動(dòng),當(dāng)m變化到時(shí),點(diǎn)N相應(yīng)移動(dòng)的路徑長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC的邊AB繞著點(diǎn)A順時(shí)針旋轉(zhuǎn))得到AB′,邊AC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn))得到AC′,聯(lián)結(jié)B′C′,當(dāng)+=60°時(shí),我們稱AB′C′ABC雙旋三角形,如果等邊ABC的邊長為a, 那么它所得的雙旋三角形B′C′=___________(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)春游,現(xiàn)有36座和42座兩種客車供選擇租用,若只租用36座客車若干輛,則正好坐滿;若只租用42座客車,則能少租一輛,且有一輛車沒有坐滿,但超過30人;已知36座客車每輛租金400元,42座客車每輛租金440元.

(1)該校七年級(jí)共有多少人參加春游?

(2)請你幫該校設(shè)計(jì)一種最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)為調(diào)查某小學(xué)六個(gè)年級(jí)學(xué)生每周的零花錢情況,他在學(xué)校中隨機(jī)抽取了400名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)并制成如下圖表,

金額(元)

人數(shù)

頻率

10≤x20

40

0. 1

20≤x30

80

0. 2

30≤x40

a

0. 4

40≤x50

100

b

50≤x60

20

0. 05

請根據(jù)圖表提供的信息解答下列問題:

1a =__________,b =__________;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若全校共有3000名學(xué)生,請你估計(jì)該校每周零花錢超過50元的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題的提出:

如果點(diǎn)P是銳角ABC內(nèi)一動(dòng)點(diǎn),如何確定一個(gè)位置,使點(diǎn)PABC的三頂點(diǎn)的距離之和PA+PB+PC的值為最小?

問題的轉(zhuǎn)化:

(1)ΔAPC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60度得到連接這樣就把確定PA+PB+PC的最小值的問題轉(zhuǎn)化成確定的最小值的問題了,請你利用如圖證明:

;

問題的解決:

(2)當(dāng)點(diǎn)P到銳角ABC的三項(xiàng)點(diǎn)的距離之和PA+PB+PC的值為最小時(shí),請你用一定的數(shù)量關(guān)系刻畫此時(shí)的點(diǎn)P的位置:_____________________________

問題的延伸:

(3)如圖是有一個(gè)銳角為30°的直角三角形,如果斜邊為2,點(diǎn)P是這個(gè)三角形內(nèi)一動(dòng)點(diǎn),請你利用以上方法,求點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別與x軸、y軸交于兩點(diǎn),與直線交于點(diǎn)C4,2).

1)點(diǎn)A坐標(biāo)為( ),B為( , );

2)在線段上有一點(diǎn)E,過點(diǎn)Ey軸的平行線交直線于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形是平行四邊形;

3)若點(diǎn)Px軸上一點(diǎn),則在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得四個(gè)點(diǎn)能構(gòu)成一個(gè)菱形.若存在,求出所有符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案