如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1m,球路的最高點B(8,9),則這個二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1m).
如圖,頂點B的坐標(biāo)為(8,9),圖象經(jīng)過點A(0,1),
設(shè)拋物線的解析式為y=a(x-8)2+9,
把點A代入解析式得a=-
1
8
,
因此這個二次函數(shù)的表達(dá)式為 y=-
1
8
(x-8)2+9.
當(dāng)y=0時,-
1
8
x2+2x+1=0,
解得x1≈16.5,x2=-0.5(不合題意,舍去);
因此小孩將球拋出了約16.5米.
故填y=-
1
8
(x-8)2+9、16.5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-
1
2
x2+bx+c
經(jīng)過A(-2,0),C(4,0)兩點,和y軸相交于點B,連接AB、BC.
(1)求拋物線的解析式(關(guān)系式).
(2)在第一象限外,是否存在點E,使得以BC為直角邊的△BCE和Rt△AOB相似?若存在,請簡要說明如何找到符合條件的點E,然后直接寫出點E的坐標(biāo),并判斷是否有滿足條件的點E在拋物線上;若不存在,請說明理由.
(3)在直線BC上方的拋物線上,找一點D,使S△BCD:S△ABC=1:4,并求出此時點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在坐標(biāo)平面上,拋物線與y軸的交點是(0,5),且經(jīng)過兩個長、寬分別為4和2的相同的長方形的頂點,則這條拋物線對應(yīng)的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知OB=2,點A和點B關(guān)于N(0,-2)成中心對稱,拋物線y=ax2+bx+c經(jīng)過點A、O、B三點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點P是x軸上的一動點,從點O出發(fā)沿射線OB方向運動,圓P半徑為
3
2
4
,速度為每秒1個單位,試求幾秒后圓P與直線AB相切;
(3)在此拋物線上,是否存在點P,使得以點P與點O、A、B為頂點的四邊形是梯形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點B的坐標(biāo)為(3,0),將直線y=kx沿y軸向上平移3個單位長度后恰好經(jīng)過B,C兩點.
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標(biāo);
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+bx與直線y=2x交于點O(0,0),A(a,12).點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E.
(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點D的坐標(biāo)為(m,n),求出m,n之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店將進(jìn)價為100元的某商品按120元的價格出售,可賣出300件;若商店在120元的基礎(chǔ)上每漲價1元,就要少賣10件,而每降價1元,就可多賣30件.
(1)求所獲利潤y(元)與售價x(元)之間的函數(shù)關(guān)系式;
(2)為了獲取最大利潤,商店應(yīng)將每件商品的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時AB、BC、CD、DA上的點,且AE=BF=CG=DH.設(shè)四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當(dāng)四邊形ABCD為正方形時,
①求S關(guān)于x的函數(shù)解析式,并求S的最小值S0;
②在圖②中畫出①中函數(shù)的草圖,并估計S=0.6時x的近似值(精確到0.01);
(2)如圖③,當(dāng)四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知A1,A2,A3,…,A2009是x軸上的點,且OA1=A1A2=A2A3=…=A2008A2009=1,分別過點A1,A2,A3,…,A2009作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點P1,P2,P3,…,P2009,若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3,…,依次進(jìn)行下去,最后記△P2008B2008P2009的面積為S2009,則S2009-S2008=______.

查看答案和解析>>

同步練習(xí)冊答案