【題目】如圖,在矩形ABCD中,AC,BD相交于點O,AE平分∠BAD交BC于點E,若∠CAE=15°,則∠BOE的度數(shù)為____________.
【答案】
【解析】
由矩形ABCD,得到OA=OB,根據(jù)AE平分∠BAD,得到等邊三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度數(shù),根據(jù)平行線的性質和等角對等邊得到OB=BE,根據(jù)三角形的內角和定理即可求出答案.
解:∵四邊形ABCD是矩形,
∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,
∴OA=OB,∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°=∠AEB,
∴AB=BE, ∵∠CAE=15°,
∴∠DAC=45°-15°=30°,
∠BAC=60°,
∴△BAO是等邊三角形,
∴AB=OB,∠ABO=60°,
∴∠OBC=90°-60°=30°,
∵AB=OB=BE,
∴∠BOE=∠BEO=
故答案為75°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“嫦娥四號”是世界首個在月球背面軟著陸和巡視探測的航天器.“嫦娥四號”任務搭載的生物科普載荷試驗中,第一顆棉花種子成功發(fā)芽,這標志著“嫦娥四號”完成了人類在月球表面進行的首次生物實驗.2019年3月20日“嫦娥四號”探月工程團隊因在航天探月科技領域作出的卓越貢獻,榮獲“影響世界華人大獎”.已知一顆棉花種子約0.000135千克,用科學記數(shù)法表示0.000135為( 。
A. 1.35×B. 0.135×C. 1.35×D. 135×
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△CDE和△AOB是兩個等腰直角三角形,∠CDE=∠AOB=90°,DC=DE=1,OA=OB=a(a>1).
(1)將△CDE的頂點D與點O重合,連接AE,BC,取線段BC的中點M,連接OM.
①如圖1,若CD,DE分別與OA,OB邊重合,則線段OM與AE有怎樣的數(shù)量關系?請直接寫出你的結果;
②如圖2,若CD在△AOB內部,請你在圖2中畫出完整圖形,判斷OM與AE之間的數(shù)量關系是否有變化?寫出你的猜想,并加以證明;
③將△CDE繞點O任意轉動,寫出OM的取值范圍(用含a式子表示);
(2)是否存在邊長最大的△AOB,使△CDE的三個頂點分別在△AOB的三條邊上(都不與頂點重合)?如果存在,請你畫出此時的圖形,并求出邊長a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展“陽光體育一小時”活動,按學校實際情況,決定開設A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運動項目,為了解學生最喜歡哪一種運動項目,隨機抽取了一部分學生進行調查,井將調查結果繪制成如下兩個統(tǒng)計圖.請結合圖中的信息解答下列問題.
(1)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角是多少度?;
(2)將條形統(tǒng)計圖補充完整;
(3)若該中學有1200名學生,喜歡籃球運動的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,垂足分別為E、F,且AB=CD.
(1)△ABF與△CDE全等嗎?為什么?
(2)求證:EG=FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,若E,F是AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為1cm/s.
(1)當E與F不重合時,四邊形DEBF是平行四邊形嗎?說明理由;
(2)若BD=8cm,AC=12cm,當運動時間t為何值時,以D、E、B、F為頂點的四邊形是矩形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com