【題目】已知∠MCN=45°,點(diǎn)B在射線CM上,點(diǎn)A是射線CN上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合).點(diǎn)B關(guān)于CN的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接AB、AD和CD,點(diǎn)F在直線BC上,且滿(mǎn)足AF⊥AD.小明在探究圖形運(yùn)動(dòng)的過(guò)程中發(fā)現(xiàn)AF=AB:始終成立.
如圖,當(dāng)0°<∠BAC<90°時(shí).
① 求證:AF=AB;
② 用等式表示線段與之間的數(shù)量關(guān)系,并證明;
當(dāng)90°<∠BAC<135°時(shí),直接用等式表示線段CF、CD與CA之間的數(shù)量關(guān)系是 .
【答案】①證明過(guò)程見(jiàn)解析,②CD+CF=AC,過(guò)程見(jiàn)解析; .
【解析】
①過(guò)點(diǎn)A作AG⊥BC于G,作AH⊥CD于H,判斷出四邊形AGCH是矩形,得出∠GAH=90°,得出∠FAG=∠DAH,進(jìn)而判斷出△FAG≌△DAH,即可得出結(jié)論; ②由矩形AGCH是正方形,判斷出CH=CG,∠CAH=∠DCA=45°,由①知,△AGF≌△AHD,得出FG=DH,即CH=,再根據(jù)勾股定理得,AC= CH,即可得出結(jié)論;
同(1)的方法判斷出△AHD≌AGF,得出DH=FG,進(jìn)而得出CH=,即可得出結(jié)論.
解:(1)①如圖1, ∵點(diǎn)D,B關(guān)于CD對(duì)稱(chēng),
∴AB=AD,∠BAC=∠DAC,∠ACD=∠MCN=45°,
∴∠DCM=90°,
過(guò)點(diǎn)A作AG⊥BC于G,作AH⊥CD于H,
∴AG=AH,∠AGC=∠AHC=∠DCM=90°,
∴四邊形AGCH是矩形,
∴∠GAH=90°,
∵AF⊥AD,
∴∠FAD=90°,
∴∠FAG=∠DAH,
∴△AGF≌△AHD(ASA),
∴AF=AD,
∵AB=AD,
∴AF=AB;
②結(jié)論:CD+CF=AC, 理由:由①知,四邊形AGCH是矩形,AG=AH,
∴矩形AGCH是正方形,
∴CH=CG,∠CAH=∠DCA=45°,
由①知,△AGF≌△AHD,
∴FG=DH,
∴CD+CF=CH+DH+CG-FG=2CH,
∴CH=,
根據(jù)勾股定理得,AC=CH=,
∴CD+CF=;
(2)結(jié)論:CD-CF=AC, 理由:如備用圖, 同(1)的方法得,△AHD≌AGF,
∴DH=FG,
∴CD-CF=CH+DH-FG+CG=2CH,
∴CH=,
根據(jù)勾股定理得,AC=CH=,
∴CD-CF=AC,
故答案為:CD-CF=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與軸交于兩點(diǎn),過(guò)點(diǎn)的直線交拋物線于點(diǎn).
(1)求此拋物線的解析式;
(2)在線段上有一動(dòng)點(diǎn),當(dāng)點(diǎn)在某個(gè)位置時(shí),的面積為,求此時(shí)點(diǎn)坐標(biāo);
(3)如圖2,當(dāng)動(dòng)點(diǎn)在直線與拋物線圍成的封閉線上運(yùn)動(dòng)時(shí),是否存在以為直角邊的直角三角形,若存在,請(qǐng)求出符合要求的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定一種新的運(yùn)算△:a△b=a(a+b)﹣a+b.例如,1△2=1×(1+2)﹣1+2=4.
(1)8△9= ;
(2)若x△3=11,求x的值;
(3)求代數(shù)式﹣x△4的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景
在綜合實(shí)踐課上,同學(xué)們以圖形的平移與旋轉(zhuǎn)為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖(1),先將一張等邊三角形紙片對(duì)折后剪開(kāi),得到兩個(gè)互相重合的△ABD和△EFD,點(diǎn)E與點(diǎn)A重合,點(diǎn)B與點(diǎn)F重合,然后將△EFD繞點(diǎn)D順時(shí)針旋轉(zhuǎn),使點(diǎn)F落在邊AB上,如圖(2),連接EC.
操作發(fā)現(xiàn)
(1)判斷四邊形BFEC的形狀,并說(shuō)明理由;
實(shí)踐探究
(2)聰聰提出疑問(wèn):若等邊三角形的邊長(zhǎng)為8,能否將圖(2)中的△EFD沿BC所在的直線平移a個(gè)單位長(zhǎng)度(規(guī)定沿射線BC方向?yàn)檎,得?/span>△,連接,,使得得到的四邊形為菱形,請(qǐng)你幫聰聰解決這個(gè)問(wèn)題,若能,請(qǐng)求出a的值;若不能,請(qǐng)說(shuō)明理由。
(3)老師提出問(wèn)題:請(qǐng)參照聰聰?shù)乃悸罚舻冗吶切蔚倪呴L(zhǎng)為8,將圖(2)中的△EFD在平面內(nèi)進(jìn)行一次平移,得到△,畫(huà)出平移后構(gòu)造出的新圖形,標(biāo)明字母,說(shuō)明平移及構(gòu)圖方法,寫(xiě)出你發(fā)現(xiàn)的一個(gè)結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,,是射線上一點(diǎn),連接,沿將三角形折疊,得三角形.
(1)當(dāng)時(shí),=_______度;
(2)如圖,當(dāng)時(shí),求線段的長(zhǎng)度;
(3)當(dāng)點(diǎn)落在平行四邊形的邊上時(shí),直接寫(xiě)出線段的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的動(dòng)點(diǎn),將線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得到線段CE,連接BE,則BE的最小值是( )
A.-1B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2014廣州)從廣州到某市,可乘坐普通列車(chē)或高鐵,已知高鐵的行駛路程是400千米,普通列車(chē)的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車(chē)的行駛路程;
(2)若高鐵的平均速度(千米/時(shí))是普通列車(chē)平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需要時(shí)間比乘坐普通列車(chē)所需時(shí)間縮短3小時(shí),求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),點(diǎn)D在拋物線上且橫坐標(biāo)為2.
(1)求這條拋物線的表達(dá)式;
(2)將該拋物線向下平移,使得新拋物線的頂點(diǎn)G在x軸上.原拋物線上一點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)N,如果△AMN是以MN為底邊的等腰三角形,求點(diǎn)N的坐標(biāo);
(3)若點(diǎn)P為拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)B作BE⊥OP,垂足為E,點(diǎn)Q為y軸上的一個(gè)動(dòng)點(diǎn),連接QE、QD,試求QE+QD的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家為了推進(jìn)教育均衡發(fā)展,在鄉(xiāng)鎮(zhèn)中心學(xué)校開(kāi)設(shè)的體育選修課有A﹣籃球,B﹣?zhàn)闱颍?/span>C﹣排球,D﹣羽毛球,E﹣乒乓球,學(xué)生可根據(jù)自己的愛(ài)好選修一門(mén),學(xué)校張老師對(duì)某班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖):
(1)求出該班的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出“足球”在扇形統(tǒng)計(jì)圖中的圓心角是多少度;
(3)若該班所在的年級(jí)共有1200人,請(qǐng)估計(jì)選籃球的學(xué)生有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com