分析 如圖,作輔助線;首先證明△BOM∽△OAN,得到$\frac{BM}{ON}$=$\frac{OM}{AN}$,設(shè)B(-m,$\frac{1}{m}$),A(n,$\frac{2}{n}$),得到BM=$\frac{1}{m}$,AN=$\frac{2}{n}$,OM=m,ON=n,進(jìn)而得到mn=$\frac{2}{mn}$,mn=$\sqrt{2}$,此為解決問題的關(guān)鍵性結(jié)論;運用三角函數(shù)的定義證明知tan∠OAB=$\frac{\sqrt{2}}{2}$,即可解決問題.
解答 解:如圖,分別過點A、B作AN⊥x軸、BM⊥x軸;
∵∠AOB=90°,
∴∠BOM+∠AON=∠AON+∠OAN=90°,
∴∠BOM=∠OAN,
∵∠BMO=∠ANO=90°,
∴△BOM∽△OAN,
∴$\frac{BM}{ON}$=$\frac{OM}{AN}$;
設(shè)B(-m,$\frac{1}{m}$),A(n,$\frac{2}{n}$),
則BM=$\frac{1}{m}$,AN=$\frac{2}{n}$,OM=m,ON=n,
∴mn=$\frac{2}{mn}$,mn=$\sqrt{2}$;
∵∠AOB=90°,
∴tan∠OAB=$\frac{OB}{OA}$①;
∵△BOM∽△OAN,
∴$\frac{OB}{OA}$=$\frac{BM}{ON}$=$\frac{1}{mn}$=$\frac{\sqrt{2}}{2}$②,
由①②知tan∠OAB=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$.
點評 本題主要考查了反比例函數(shù)圖象上點的坐標(biāo)特征、相似三角形的判定等知識點及其應(yīng)用問題;解題的方法是作輔助線,將分散的條件集中;解題的關(guān)鍵是靈活運用相似三角形的判定等知識點來分析、判斷、推理或解答.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 288° | B. | 144° | C. | 216° | D. | 120° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com