如圖,已知△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足為E,若DE=2cm,則BC=
12
12
cm.
分析:首先連接AD,由DE垂直平分AC,可得AD=CD,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠DAC=30°,繼而求得AD與CD的長,則可求得BD的長,繼而求得答案.
解答:解:連接AD,
∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵DE垂直平分AC,
∴AD=CD,
∴∠DAC=∠C=30°,
∴AD=CD=2DE=2×2=4(cm),
∴∠BAD=∠BAC-∠DAC=90°,
∴BD=2AD=8(cm),
∴BC=BD+CD=12(cm).
故答案為:12.
點評:此題考查了線段垂直平分線的性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案