【題目】如圖,二次函數(shù)的圖象經(jīng)過點,與軸交于點,且與軸交點的橫坐標(biāo)分別為、,其中,,下列結(jié)論:①;②;③;④.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
由圖可知當(dāng)x=-2時,函數(shù)值y<0,可判斷①;由圖可知對稱軸x=>-1,可判斷②;由點可知c=2,由點與點關(guān)于對稱軸對稱可得對稱軸x==,解得a=b,再由圖可知,當(dāng)x=1時,y<0,可判斷③;由圖可知,頂點縱坐標(biāo)值大于2,據(jù)此可判斷④.
解:由圖可知當(dāng)x=-2時,函數(shù)值y=<0,故①正確;由圖可知對稱軸x=>-1,解得,故②正確;由點可知c=2,由點與點關(guān)于對稱軸對稱可得對稱軸x==,解得a=b,由圖可知,當(dāng)x=1時,y=a+b+2=2a+2<0,解得a<-1,故③正確;由圖可知,,解得,故④正確.
①②③④均正確,故選擇D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.
(1)請判斷四邊形AEA′F的形狀,并說明理由;
(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把半徑為的圓周按分割為三段.則最短的弧所對的圓心角為________,該弧和半徑圍成的扇形的面積為________,最長的弧所對的圓周角為________,最長的弧長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A(0,4)、B(-4,4)、C(-6,2),請在網(wǎng)格圖中進(jìn)行如下操作:
(1)利用網(wǎng)格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);
(2)連接AD、CD,則⊙D的半徑為_ __(結(jié)果保留根號),∠ADC的度數(shù)為_ __;
(3)若扇形DAC是一個圓錐的側(cè)面展開圖,求該圓錐底面半徑.(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計時牌CD,在點B處測量計時牌的頂端C的仰角是45°,在點A處測量計時牌的底端D的仰角是60°,求這塊倒計時牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④(為實數(shù));⑤點,,是該拋物線上的點,則,正確的個數(shù)有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標(biāo)是(1,n),與y軸的交點在(0,3)和(0,6)之間(包含端點),則下列結(jié)論錯誤的是( )
A.3a+b<0B.﹣2≤a≤﹣lC.abc>0D.9a+3b+2c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小左同學(xué)想利用影長測量學(xué)校旗桿的高度,如圖,她在某一時刻立一長度為1米的標(biāo)桿,測得其影長為米,同時旗桿投影的一部分在地上,另一部分在某一建筑物的墻上,測得旗桿與建筑物的距離為10米,旗桿在墻上的影高為2米,請幫小左同學(xué)算出學(xué)校旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,-),點D在劣弧上,連結(jié)BD交x軸于點C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點E,使得直線AE恰為⊙M的切線,求此時點E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com