【題目】已知二次函數(shù)的圖象如圖,下列結(jié)論:;②;③;④;⑤;⑥為任意實數(shù)),其中正確的結(jié)論有(

A. B. C. D.

【答案】B

【解析】

由圖像可知c>0,對稱軸,可判斷①;代入x=-1,由圖像可知a-b+c<0,可判斷;由對稱軸可判斷③;由圖像對稱性可知,對稱軸右側(cè)交點為(3,0),代入x=2即可判斷④;a-b+c<0即可判斷⑤;由圖可知,函數(shù)最大值為a+b+c,則當x=m(m為任意值)都有am2+bm+c≤a+b+c,可判斷⑥.

由圖像可知c>0,由對稱軸可知ab<0,則abc<0,故錯誤;代入x=-1,由圖像可知a-b+c<0,則,錯誤;,b≠0,錯誤;由圖可知當x=0x=2對稱,x=2時,由圖可得y=4a+2b+c>0,正確;a-b+c<02a-2b+2c<0,由可得2a=-b,2a-2b+2c=-3b+2c<0,,正確;由圖可知,函數(shù)最大值為a+b+c,則當x=m(m為任意值),都有am2+bm+c≤a+b+c,整理后得a+b≥m(am+b),錯誤.

綜上,正確的是,故選擇B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列7個事件中:(1)擲一枚硬幣,正面朝上.(2)從一副沒有大小王的撲克牌中抽出一張恰為黑桃.(3)隨意翻開一本有400頁的書,正好翻到第100頁.(4)天上下雨,馬路潮濕.(5)你能長到身高4.(6)買獎券中特等大獎.(7)擲一枚正方體骰子,得到的點數(shù)<7.其中(將序號填入題中的橫線上即可)確定事件為________;不確定事件為________;不可能事件為________;必然事件為________;不確定事件中,發(fā)生可能性最大的是________,發(fā)生可能性最小的是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點EF分別在BCCD上,下列結(jié)論:CE=CF;②∠AEB=75°;BE+DF=EF;S正方形ABCD=

其中正確的序號是   (把你認為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DFBE.求證:CECF

2)如圖2,在正方形ABCD中,EAB上一點,GAD上一點,如果∠GCE45°,請你利用(1)的結(jié)論證明:GEBEGD

3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°,ABBCEAB上一點,且∠DCE45°BE4DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC,∠BAC120°,點D、F分別為AB、AC中點,EDAB,GFAC,若BC15cm,求EG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.

(1)求證:AE=BF;

(2)連接GB,EF,求證:GB∥EF;

(3)若AE=1,EB=2,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖和圖.請根據(jù)相關信息,解答下列問題:

(1)本次接受調(diào)查的跳水運動員人數(shù)為 ,圖的值為

(2)求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,AOP為等邊三角形,A(0,2),點By軸上一動點,以BP為邊作等邊PBC,延長CAx軸于點E.

(1)求證:OBAC;

(2)CAP的度數(shù)是;

(3)B點運動時,猜想AE的長度是否發(fā)生變化?并說明理由;

(4)(3)的條件下,在y軸上存在點Q,使得AEQ為等腰三角形,請寫出點Q的坐標.

查看答案和解析>>

同步練習冊答案