【題目】已知,矩形ABCD中,延長BC至E,連接DE,F為DE的中點,連結(jié)AF、CF且AF⊥CF.
求證:(1)∠ADF=∠BCF;
(2)BD=AD+CE.
【答案】見解析
【解析】
(1)根據(jù)F為中點得到CF=DF=EF,再得到∠CDF=∠DCF,再利用矩形的性質(zhì)即可求解;
(2)先根據(jù)全等三角形的判定與性質(zhì)得到△BDE為等腰三角形,再根據(jù)線段之間的關(guān)系即可證明.
(1)在矩形ABCD中,
∵AD=BC,∠ADC=∠BCD=90°,
∴∠DCE=90°,
在Rt△DCE中,
∵F為DE中點,
∴DF=CF,
∴∠CDF=∠DCF,
∴∠ADC+∠CDF=∠BCD+∠DCF,
即∠ADF=∠BCF;
(2)連接BF,
在△AFD和△BFC中
,
∴△ADF≌△BCF,
∴∠AFD=∠BFC,
∵AF⊥CF,
∴∠AFD+∠AFB =∠BFC+∠AFB=90°
∴BF⊥DE,
∵F為DE中點,
在△BDF和△BEF中
,
∴△ADF≌△BCF,
∴BD=BE
∵BE=BC+CE
∴BD=BC+CE= AD+CE.
故BD=AD+CE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應(yīng)點為P1(a+6,b-2).
(1)直接寫出點A1,B1,C1的坐標.
(2)在圖中畫出△A1B1C1.
(3)連接AA1,求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:小明遇到這樣一個問題:已知:在△ABC中,AB,BC,AC三邊的長分別為,求△ABC的面積.小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出△ABC的面積.他把這種解決問題的方法稱為構(gòu)圖法.請回答:
(1)圖1中△ABC的面積為 ;
參考小明解決問題的方法,完成下列問題:
(2)圖2是一個6×6的正方形網(wǎng)格(每個小正方形的邊長為1).
①利用構(gòu)圖法在答卷的圖2中畫出三邊長分別為、2、的格點△DEF;
②計算△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個動點,F是AB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的( ).
A. 線段EC B. 線段AE C. 線段EF D. 線段BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線l1:y=2x+3與直線l2:y=kx+b的交點A在y軸上,直線l3:y=x與直線l1相交于點B與直線l2相交于點C(1,1).
(1)求直線l2的解析式和B點的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 直線與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點, 點P為OA上一動點, 當PC+PD最小時, 點P的坐標為( )
A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某乳品公司向某地運輸一批牛奶,由鐵路運輸每千克需運費0.60元,由公路運輸,每千克需運費0.30元,另需補助600元
(1)設(shè)該公司運輸?shù)倪@批牛奶為x千克,選擇鐵路運輸時,所需運費為y1元,選擇公路運輸時,所需運費為y2元,請分別寫出y1、y2與x之間的關(guān)系式;
(2)若公司只支出運費1500元,則選用哪種運輸方式運送的牛奶多?若公司運送1500千克牛奶,則選用哪種運輸方式所需費用較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條河的兩岸BC與DE互相平行,兩岸各有一排景觀燈(圖中黑點代表景觀燈),每排相鄰兩景觀燈的間隔都是10 m,在與河岸DE的距離為16 m的A處(AD⊥DE)看對岸BC,看到對岸BC上的兩個景觀燈的燈桿恰好被河岸DE上兩個景觀燈的燈桿遮。影禗E上的兩個景觀燈之間有1個景觀燈,河岸BC上被遮住的兩個景觀燈之間有4個景觀燈,求這條河的寬度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時間(月份)與市場售價(元/千克)的關(guān)系如下表:
上市時間(月份) | 1 | 2 | 3 | 4 | 5 | 6 |
市場售價(元/千克) | 10.5 | 9 | 7.5 | 6 | 4.5 | 3 |
這種蔬菜每千克的種植成本(元/千克)與上市時間(月份)滿足一個函數(shù)關(guān)系,這個函數(shù)的圖象是拋物線的一段(如圖).
(1)寫出上表中表示的市場售價(元/千克)關(guān)于上市時間(月份)的函數(shù)關(guān)系式;
(2)若圖中拋物線過點,寫出拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值為多少?(收益=市場售價-種植成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com