如圖,在四邊形ABCD中,AD=BC,點(diǎn)P是對(duì)角線的中點(diǎn),點(diǎn)E和點(diǎn)F分別是CD與AB的中點(diǎn).若∠PEF=20°,則∠EPF的度數(shù)是(  )
分析:根據(jù)中位線定理和已知,易證明△EPF是等腰三角形,根據(jù)“等腰三角形的兩個(gè)底角相等”的性質(zhì)和三角形內(nèi)角和定理來(lái)求∠EPF的度數(shù).
解答:解:∵在四邊形ABCD中,P是對(duì)角線BD的中點(diǎn),E,F(xiàn)分別是AB,CD的中點(diǎn),
∴FP,PE分別是△CDB與△DAB的中位線,
∴PF=
1
2
BC,PE=
1
2
AD,
∵AD=BC,
∴PF=PE,故△EPF是等腰三角形.
∴∠PEF=∠PFE=20°,
∴∠EPF=180°-2∠PEF=140°.
故選:D.
點(diǎn)評(píng):本題考查了三角形中位線定理及等腰三角形的性質(zhì),解題時(shí)要善于根據(jù)已知信息,確定應(yīng)用的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案