【題目】為了節(jié)省空間,家里的飯碗一般是豎直擺放的,如果只飯碗(形狀、大小相同)豎直擺放的高度為只飯碗豎直擺放的高度為.如圖所示,小穎家的碗櫥每格的高度為則一摞碗豎直放人櫥柜時(shí),每格最多能放________________________

【答案】

【解析】

由題意得,碗的高度和碗的個(gè)數(shù)的關(guān)系式為y=kx+b,然后代入題中的兩種情況得,

根據(jù)每格櫥柜最高35cm,即可求出答案.

設(shè)碗的個(gè)數(shù)為x cm,碗摞起來的高度為y cm,可得碗的高度和碗的個(gè)數(shù)的關(guān)系式為y=kx+b,根據(jù)4只碗摞起來的高度為11cm,8只碗摞起來的高度為17cm,

列方程組 ,解得: ,

碗櫥每格的高度為,,

解得:,所以每格最多能放20個(gè)碗,

故答案為:20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠B=∠D90°,∠C72°,在BC、CD上分別找一點(diǎn)MN,使AMN的周長最小時(shí),∠AMN+ANM的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是,,,先將向上平移3個(gè)單位長度,再向右平移2個(gè)單位長度,得到.

(1)在圖中畫出;

(2)點(diǎn),的坐標(biāo)分別為______、______;

(3)若軸有一點(diǎn),使面積相等,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,,交于點(diǎn).若,分別是邊上的動(dòng)點(diǎn),且,則周長的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖是一個(gè)正方形紙片,如果將正方形紙片繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角度,得到正方形,于點(diǎn)的延長線交于點(diǎn),連接、

1)求證:平分

2)直接寫出線段、之間的數(shù)量關(guān)系;

3)連接,,試探究在旋轉(zhuǎn)過程中,四邊形能否成為矩形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,AC、DC為弦,∠ACD=60°,PAB延長線上的點(diǎn),∠APD=30°

1)求證:DP⊙O的切線;

2)若⊙O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12如圖,在平面直角坐標(biāo)系xOy中,將拋物線的對(duì)稱軸繞著點(diǎn)P,2順時(shí)針旋轉(zhuǎn)45°后與該拋物線交于A、B兩點(diǎn),點(diǎn)Q是該拋物線上的一點(diǎn).

1求直線AB的函數(shù)表達(dá)式;

2如圖,若點(diǎn)Q在直線AB的下方,求點(diǎn)Q到直線AB的距離的最大值;

3如圖,若點(diǎn)Qy軸左側(cè),且點(diǎn)T0,tt<2是直線PO上一點(diǎn),當(dāng)以P、BQ為頂點(diǎn)的三角形與PAT相似時(shí),求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形

1)根據(jù)奇異三角形的定義,請(qǐng)你判斷命題:等邊三角形一定是奇異三角形 命題.(填寫真命題、假命題”)

2)在RtΔABC中,ACB90°,ABc,ACb,BCa,且ba,若RtΔABC奇異三角形,則abc

3)如圖,在四邊形ACBD中,ACB=∠ADB=90°,AD=BD,若在四邊形ACBD內(nèi)存在點(diǎn)E使得AEAD,CBCE

求證:ΔACE奇異三角形;

②當(dāng)ΔACE是直角三角形時(shí),且AC,求線段AB 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,還需再添加兩個(gè)條件才能使,則不能添加的一組條件是(

A. AC=DE,∠C=EB. BD=AB,AC=DE

C. AB=DB,∠A=DD. C=E,∠A=D

查看答案和解析>>

同步練習(xí)冊答案