在⊙O的外切梯形ABCD中,若ADBC,那么∠DOC的度數(shù)為

A.70°       B.90°       C.60°       D.45°

 

答案:B
提示:

熟悉圓的外切梯形的性質(zhì)。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm點(diǎn)P從A開始沿AB邊向B以3cm/s的速度移動,點(diǎn)Q從C開始沿CD邊向D以1cm/s的速度移動,如果點(diǎn)P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t(s).
(1)t為何值時(shí),四邊形APQD是平形四邊形?
(2)如圖2,如果⊙P和⊙Q的半徑都是2cm,那么,t為何值時(shí),⊙P和⊙Q外切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=12,AD=18,AB=10.動點(diǎn)P、Q分別從點(diǎn)D、B同時(shí)出發(fā),動點(diǎn)P沿射線DA的方向以每秒2個(gè)單位長的速度運(yùn)動,動點(diǎn)Q在線段BC上以每秒1個(gè)單位長的速度向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)精英家教網(wǎng)C時(shí),點(diǎn)P隨之停止運(yùn)動.設(shè)運(yùn)動的時(shí)間為t(秒).
(1)當(dāng)點(diǎn)P在線段DA上運(yùn)動時(shí),連接BD,若∠ABP=∠ADB,求t的值;
(2)當(dāng)點(diǎn)P在線段DA上運(yùn)動時(shí),若以BQ為直徑的圓與以AP為直徑的圓外切,求t的值;
(3)設(shè)射線PQ與射線AB相交于點(diǎn)E,△AEP能否為等腰三角形?如果能,請直接寫出t的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖所示的直角坐標(biāo)系中,點(diǎn)C在y軸的正半軸上,四邊形OABC為平行四邊形,OA=2,∠AOC=60°,以O(shè)A為直徑的⊙P經(jīng)過點(diǎn)C,點(diǎn)D在y軸上,DM為始終與y軸垂直且與AB邊相交的動直線,設(shè)DM與AB邊的交點(diǎn)為M(點(diǎn)M在線段AB上,但與精英家教網(wǎng)A、B兩點(diǎn)不重合),點(diǎn)N是DM與BC的交點(diǎn),設(shè)OD=t;
(1)求點(diǎn)A和B的坐標(biāo);
(2)設(shè)△BMN的外接圓⊙G的半徑為R,請你用t表示R及點(diǎn)G的坐標(biāo);
(3)當(dāng)⊙G與⊙P相外切時(shí),求直角梯形OAMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD為直徑的半圓D與BC相切.
(1)求證:OB⊥OC;
(2)若AD=12,∠BCD=60°,⊙O1與半⊙O外切,并與BC、CD相切,求⊙O1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•河北)在直角梯形ABCD中,AD⊥BC,AB⊥AD,AB=10
3
,AD、BC的長是方程x2-20x+75=0的兩根,那么,以點(diǎn)D為圓心、AD為半徑的圓與以點(diǎn)C為圓心、BC為半徑的圓位置關(guān)系是
外切
外切

查看答案和解析>>

同步練習(xí)冊答案