相似且面積的比為,則
周長比為
3:4
根據(jù)相似三角形的面積的比等于相似比的平方先求出△ABC與△DEF的相似比,然后根據(jù)相似三角形的周長的比等于相似比解答即可.
解:∵相似三角形△ABC與△DEF面積的比為9:16,
∴它們的相似比為3:4,
∴△ABC與△DEF的周長比為3:4.
故答案為:3:4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中, DC∥AB,AC與BD相交于O點(diǎn),且,S△COD=12,則△ABC的面積是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點(diǎn)P、Q同時從點(diǎn)A出發(fā),其中P以4cm/s的速度,沿ABC的路線向點(diǎn)C運(yùn)動;Q以2cm/s的速度,沿AC的路線向點(diǎn)C運(yùn)動.當(dāng)P、Q到達(dá)終點(diǎn)C時,整個運(yùn)動隨之結(jié)束,設(shè)運(yùn)動時間為t秒.

小題1:(1)在點(diǎn)P、Q運(yùn)動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;
小題2:(2)點(diǎn)Q關(guān)于菱形ABCD的對角線交點(diǎn)O的對稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N
①當(dāng)t為何值時,點(diǎn)PM、N在一直線上?
②當(dāng)點(diǎn)P、MN不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:,則=__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)在直角坐標(biāo)系中,已知點(diǎn)A(-2,0)、B(0,4)、C(0,3),過點(diǎn)C作直線交x軸于點(diǎn)D,使得以   D、O、C為頂點(diǎn)的三角形與△AOB相似,求點(diǎn)D的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

兩個相似三角形對應(yīng)邊的比為2:3,則對應(yīng)邊上中線比為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在直角梯形ABCD中,AB∥DC,∠D = 90o,ACBC,
AB =" 10cm" , BC = 6cm,F點(diǎn)以2 cm/秒的速度在線段AB上由AB勻速運(yùn)動, E點(diǎn)同時以1 cm/秒的速度在線段BC上由BC勻速運(yùn)動,設(shè)運(yùn)動時間為 t 秒 ( 0 < t < 5 ).

小題1:(1)求證:△ A C D ∽△ B A C
小題2:(2)求DC的長;
小題3:(3)設(shè)四邊形AFEC的面積為 y ,求 y關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩個相似多邊形的周長比為1:2,它們的面積和為25,則這兩個多邊形的面積分別是              。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分5分)
已知:如圖,在中,DAC上一點(diǎn),聯(lián)結(jié)BD,且∠ABD =∠ACB.

(1)求證:△ABD∽△ACB;
(2)若AD=5,AB= 7,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案