【題目】如圖,OA=2,以點(diǎn)A為圓心,1為半徑畫⊙AOA的延長線交于點(diǎn)C,過點(diǎn)AOA的垂線,垂線與⊙A的一個(gè)交點(diǎn)為B,連接BC

1)線段BC的長等于 ;

2)請(qǐng)?jiān)趫D中按下列要求逐一操作,并回答問題:

①以點(diǎn) 為圓心,以線段 的長為半徑畫弧,與射線BA交于點(diǎn)D,使線段OD的長等于;

②連OD,在OD上畫出點(diǎn)P,使OP得長等于,請(qǐng)寫出畫法,并說明理由.

【答案】1;(2A;BC;答案見解析

【解析】

試題分析:(1)由圓的半徑為1,可得出AB=AC=1,結(jié)合勾股定理即可得出結(jié)論;

2)①結(jié)合勾股定理求出AD的長度,從而找出點(diǎn)D的位置,根據(jù)畫圖的步驟,完成圖形即可;

②根據(jù)線段的三等分點(diǎn)的畫法,結(jié)合OA=2AC,即可得出結(jié)論.

試題解析:(1)在RtBAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案為:

2)①在RtOAD中,OA=2,OD=,∠OAD=90°,∴AD===BC以點(diǎn)A為圓心,以線段BC的長為半徑畫弧,與射線BA交于點(diǎn)D,使線段OD的長等于

依此畫出圖形,如圖1所示.

故答案為:A;BC

②∵OD=,OP=,OC=OA+AC=3,OA=2,∴

故作法如下:

連接CD,過點(diǎn)AAPCDOD于點(diǎn)P,P點(diǎn)即是所要找的點(diǎn).

依此畫出圖形,如圖2所示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,m).

(1)求該二次函數(shù)的關(guān)系式和m值;

(2)結(jié)合圖象,解答下列問題:(直接寫出答案)

當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸下方?

當(dāng)﹣1<x<2時(shí),直接寫出函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017濟(jì)寧,第21題,9分)已知函數(shù)的圖象與x軸有兩個(gè)公共點(diǎn).

(1)求m的取值范圍,并寫出當(dāng)m取范圍內(nèi)最大整數(shù)時(shí)函數(shù)的解析式;

(2)題(1)中求得的函數(shù)記為C1

①當(dāng)nx≤﹣1時(shí),y的取值范圍是1≤y≤﹣3n,求n的值;

②函數(shù)的圖象由函數(shù)C1的圖象平移得到,其頂點(diǎn)P落在以原點(diǎn)為圓心,半徑為的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點(diǎn)為M,求點(diǎn)P與點(diǎn)M距離最大時(shí)函數(shù)C2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為A(a,0)B(b,0),且ab滿足|2a+6|+(2a3b+12)20,現(xiàn)同時(shí)將點(diǎn)AB分別向左平移2個(gè)單位,再向上平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD

(1)請(qǐng)直接寫出AB、CD四點(diǎn)的坐標(biāo);

(2)如圖2,點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是線段CD的中點(diǎn),連接PQ,PO,當(dāng)點(diǎn)P在線段AC上移動(dòng)時(shí)(不與AC重合),請(qǐng)找出∠PQD,∠OPQ,∠POB的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)在坐標(biāo)軸上是否存在點(diǎn)M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于xy的二元一次方程ax+bya,b為常數(shù)且a≠0

1)該方程的解有   組;若a=﹣2,b6,且x,y為非負(fù)整數(shù),請(qǐng)直接寫出該方程的解;

2)若是該方程的兩組解,且m1m2

①若n1n22m2m1),求a的值;

②若m1+m23b,n1+n2ab+4,且b2,請(qǐng)比較n1n2大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱使等式成立的一對(duì)有理數(shù)有趣數(shù)對(duì),記為如:數(shù)對(duì)都是有趣數(shù)對(duì)

1)數(shù)對(duì),中是有趣數(shù)對(duì)的是   ;

2)若有趣數(shù)對(duì),求的值;

3)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的有趣數(shù)對(duì)   ;(注意:不能與題目中已有的有趣數(shù)對(duì)重復(fù))

4)若有趣數(shù)對(duì)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生測(cè)量一條南北流向的河的寬度,如圖所示,某學(xué)生在河?xùn)|岸點(diǎn)A處觀測(cè)到河對(duì)岸水邊有一點(diǎn)C,測(cè)得CA北偏西31°的方向上,沿河岸向北前行10米到達(dá)B處,測(cè)得CB北偏西45°的方向上,請(qǐng)你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計(jì)算出這條河的寬度.(精確到1米,參考數(shù)值:tan31°≈,sin31°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生社會(huì)實(shí)踐小組開展調(diào)查,獲取了本校食堂學(xué)生早餐的營養(yǎng)情況,如圖是調(diào)查報(bào)告中的一部分,根據(jù)所得信息,解答下列問題.

1)早餐中所含脂肪的質(zhì)量是______.

2)若早餐中蛋白質(zhì)和碳水化合物所占百分比的和不高于85%,求早餐中所含碳水化合物質(zhì)量的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案