【題目】某市地鐵工程正在加快建設(shè),為了緩解市區(qū)內(nèi)一些主要路段交通擁擠的現(xiàn)狀,交警大隊在一些主要路口設(shè)立了交通路況指示牌,如圖所示,小明在離指示牌3.2米的點B處測得指示牌頂端D點和底端E點的仰角分別為52°和30°.求路況指示牌DE的高度.(精確到0.01米,參考數(shù)據(jù):≈1.732,sin52°≈0.79,cos52°≈0.62, tan52°≈1.28.)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在疫情防控期間,某中學(xué)為保障廣大師生生命健康安全購進(jìn)一批免洗手消毒液和84消毒液.如果購買100瓶免洗手消毒液和150瓶84消毒液,共需花費1500元;如果購買120瓶免洗手消毒液和160瓶84消毒液,共需花費1720元.
(1)每瓶免洗手消毒液和每瓶84消毒液的價格分別是多少元?
(2)某藥店出售免洗手消毒液,滿150瓶免費贈送10瓶84消毒液.若學(xué)校從該藥店購進(jìn)免洗手消毒液和84消毒液共230瓶,恰好用去1700元,則學(xué)校購買免洗手消毒液多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P是平面內(nèi)任意一點,點A,B是上不重合的兩個點,連結(jié).當(dāng)時,我們稱點P為的“關(guān)于的關(guān)聯(lián)點”.
(1)如圖2,當(dāng)點P在上時,點P是的“關(guān)于的關(guān)聯(lián)點”時,畫出一個滿足條件的,并直接寫出的度數(shù);
(2)在平面直角坐標(biāo)系中有點,點M關(guān)于y軸的對稱點為點N.
①以點O為圓心,為半徑畫,在y軸上存在一點P,使點P為“關(guān)于的關(guān)聯(lián)點”,直接寫出點P的坐標(biāo);
②點是x軸上一動點,當(dāng)的半徑為1時,線段上至少存在一點是的“關(guān)于某兩個點的關(guān)聯(lián)點”,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O及⊙O上一點P,過點P作⊙O的切線.
小明設(shè)計了如下尺規(guī)作法:
①連接OP,以點P為圓心,OP長為半徑畫弧交⊙O于點A;
②連接OA,延長OA到B,使AB=OA,作直線PB.則直線即為所求作.
(1)請證明小明作法的正確性;
(2)請你自己再設(shè)計一種尺規(guī)作圖方法(保留痕跡,不要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在趣味運動會“定點投籃”項目中,我校七年級八個班的投籃成績單位:個分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個、20個 B. 22個、21個 C. 20個、21個 D. 20個、22個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.在中,把沿對角線所在的直線折疊,使點落在點處,交于點.連接.
(1)求證:;
(2)求證:為等腰三角形;
(3)將圖1中的沿射線方向平移得到(如圖2所示) .若在中,. 當(dāng)時,直接寫出平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)部有若干個點,則用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫下表:
正方形ABCD內(nèi)點的個數(shù) | 1 | 2 | 3 | 4 | ... | n |
分割成三角形的個數(shù) | 4 | 6 | _____ | _____ | ... | _____ |
(2)原正方形能否被分割成2021個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷一種成本價為20元/件的商品,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于成本價的1.8倍,在試銷售過程中發(fā)現(xiàn)每天的銷量y(件)與售價x(元/件)之間滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表所示:
(1)求y與x之間的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
(2)該商場銷售這種商品每天所獲得的利潤為w元,若每天銷售這種商品需支付人員工資、管理費等各項費用共200元,求w與x之間的函數(shù)表達(dá)式;并求出這種商品銷售單價定為多少時,才能使商場每天獲取的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com