【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、點(diǎn)B(0,1+t)、C(0,1﹣t)(t>0),點(diǎn)P在以D(3,3)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則t的最小值是 .
【答案】 ﹣1
【解析】解:如圖,連接AP,
∵點(diǎn)A(0,1)、點(diǎn)B(0,1+t)、C(0,1﹣t)(t>0),
∴AB=(1+t)﹣1=t,AC=1﹣(1﹣t)=t,
∴AB=BC,
∵∠BPC=90°,
∴AP= BC=AB=t,
要t最小,就是點(diǎn)A到⊙D上的一點(diǎn)的距離最小,
∴點(diǎn)P在AD上,
∵A(0,1),D(3,3),
∴AD= = ,
∴t的最小值是AP=AD﹣PD= ﹣1,
所以答案是 ﹣1.
【考點(diǎn)精析】利用直角三角形斜邊上的中線對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形斜邊上的中線等于斜邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)計(jì)算:|﹣3|+( +π)0﹣(﹣ )﹣2﹣2cos60°;
(2)先化簡(jiǎn),在求值:( ﹣ )+ ,其中a=﹣2+ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)E為AD中點(diǎn),點(diǎn)F為BC邊上任一點(diǎn),過(guò)點(diǎn)F分別作EB,EC的垂線,垂足分別為點(diǎn)G,H,則FG+FH為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1 , y1),點(diǎn)Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0), ①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為 ,點(diǎn)M的坐標(biāo)為(m,3),若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C的坐標(biāo)為(0,﹣1).
(1)在如圖的方格紙中把△ABC以點(diǎn)O為位似中心擴(kuò)大,使放大前后的位似比為1:2,畫(huà)出△A1B2C2(△ABC與△A1B2C2在位似中心O點(diǎn)的兩側(cè),A,B,C的對(duì)應(yīng)點(diǎn)分別是A1 , B2 , C2).
(2)利用方格紙標(biāo)出△A1B2C2外接圓的圓心P,P點(diǎn)坐標(biāo)是 , ⊙P的半徑= . (保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測(cè)試中他們的成績(jī)統(tǒng)計(jì)如下表:
跳繩數(shù)/個(gè) | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個(gè))分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補(bǔ)全頻數(shù)分布直方圖;
(2)這個(gè)班同學(xué)這次跳繩成績(jī)的眾數(shù)是個(gè),中位數(shù)是個(gè);
(3)若跳滿90個(gè)可得滿分,學(xué)校初三年級(jí)共有720人,試估計(jì)該中學(xué)初三年級(jí)還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測(cè)得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長(zhǎng).(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個(gè)位)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com