梯形ABCD∽梯形A’B’C’D’, SABCSA’B’C’ 13,則BDB’D’________,

S梯形ABCDS梯形ABCD________。

 

答案:
解析:

1,13

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

善于學(xué)習(xí)的小敏查資料知道:對應(yīng)角相等,對應(yīng)邊成比例的兩個梯形,叫做相似梯形.他想到“平行于三角形一邊的直線和其他兩邊相交,所構(gòu)成的三角形與原三角形相似”,提出如下兩個問題,你能幫助解決嗎?
問題一:平行于梯形底邊的直線截兩腰所得的小梯形和原梯形是否相似?
(1)從特殊情形入手探究.假設(shè)梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位線(如圖①).根據(jù)相似梯形的定義,請你說明梯形AMND與梯形ABCD是否相似;
(2)一般結(jié)論:平行于梯形底邊的直線截兩腰所得的梯形與原梯形
 
;(填“相似”或“不相似”或“相似性無法確定”.不要求證明)
問題二:平行于梯形底邊的直線截兩腰所得的兩個小梯形是否相似?
(1)從特殊平行線入手探究.梯形的中位線截兩腰所得的兩個小梯形
 
;(填“相似”或“不相似”或“相似性無法確定”.不要求證明)
(2)從特殊梯形入手探究.同上假設(shè),梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到與梯形底邊平行的直線PQ(點P,Q在梯形的兩腰上,如圖②),使得梯形APQD與梯形PBCQ相似嗎?請根據(jù)相似梯形的定義說明理由;
(3)一般結(jié)論:對于任意梯形(如圖③),一定
 
(填“存在”或“不存在”)平行于梯形底邊的直線PQ,使截得的兩個小梯形相似.若存在,則確定這條平行線位置的條件是
APPB
=
 
.(不妨設(shè)AD=a,BC=b,AB=c,CD=d.不要求證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,①在梯形ABCD中,AD∥BC.現(xiàn)有3個關(guān)系式:
②AB=AD+BC,③DE=CE,④AE⊥BE.
請在所給的關(guān)系式②,③,④中選取兩個與①組成條件,剩余的一個作為結(jié)論,使得由條件能正確推出結(jié)論并說明你的理由.
我選取的條件是關(guān)系式
,
和①.(填寫序號)
結(jié)論是關(guān)系式
.(填寫序號)
由條件能正確推出結(jié)論,理由如下:
連接AB的中點F與E,
∴EF為梯形ABCD的中位線,
∴EF=
1
2
(AD+BC)
∵AE⊥BE.
∴EF=
1
2
AB,
∴AB=AD+BC
連接AB的中點F與E,
∴EF為梯形ABCD的中位線,
∴EF=
1
2
(AD+BC)
∵AE⊥BE.
∴EF=
1
2
AB,
∴AB=AD+BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)如圖,在等腰梯形ABCD中,AB=DC=5,AD=4,BC="10." 點
E在下底邊BC上,點F在腰AB上.

(1)若EF平分等腰梯形ABCD的周長,設(shè)BE長為x,試用含x的代數(shù)式表示△BEF的面積;
(2)是否存在線段EF將等腰梯形ABCD的周長和面積同時平分?若存在,求出此時BE的長;若不存在,請說明理由;
(3)是否存在線段EF將等腰梯形ABCD的周長和面積同時分成1∶2的兩部分?若存在,求出此時BE的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇揚州江都區(qū)麾村中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.點E在下底邊BC上,點F在腰AB上.
(1)若EF平分等腰梯形ABCD的周長,設(shè)BE長為,試用含的代數(shù)式表示△BEF的面積;
(2)是否存在線段EF將等腰梯形ABCD的周長和面積同時平分?若存在,求出此BE的長;若不存在,請說明理由;
(3)是否存在線段EF將等腰梯形ABCD的周長和面積同時分成1︰2的兩部分?若存在,求此時BE的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇揚州江都區(qū)麾村中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.點E在下底邊BC上,點F在腰AB上.

(1)若EF平分等腰梯形ABCD的周長,設(shè)BE長為,試用含的代數(shù)式表示△BEF的面積;

(2)是否存在線段EF將等腰梯形ABCD的周長和面積同時平分?若存在,求出此BE的長;若不存在,請說明理由;

(3)是否存在線段EF將等腰梯形ABCD的周長和面積同時分成1︰2的兩部分?若存在,求此時BE的長;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案