【題目】如圖,在正方形ABCD中,點(diǎn)M是BC邊上的任一點(diǎn),連接AM并將線段AM繞M順時(shí)針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點(diǎn)P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點(diǎn)Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
【答案】
(1)證明:在正方形ABCD中,AB=BC,∠ABC=∠C,
在△ABM和△BCP中,
,
∴△ABM≌△BCP(SAS),
∴AM=BP,∠BAM=∠CBP,
∵∠BAM+∠AMB=90°,
∴∠CBP+∠AMB=90°,
∴AM⊥BP,
∵AM并將線段AM繞M順時(shí)針旋轉(zhuǎn)90°得到線段MN,
∴AM⊥MN,且AM=MN,
∴MN∥BP,
∴四邊形BMNP是平行四邊形
(2)解:BM=MC.
理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,
∴∠BAM=∠CMQ,
又∵∠ABC=∠C=90°,
∴△ABM∽△MCQ,
∴ ,
∵△MCQ∽△AMQ,
∴△AMQ∽△ABM,
∴ = ,
∴ = ,
∴BM=MC.
【解析】(1)根據(jù)正方形的性質(zhì)可得AB=BC,∠ABC=∠C,然后利用“邊角邊”證明△ABM和△BCP全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,從而得到MN∥BP,然后根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形證明即可;(2)根據(jù)同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得 = ,再求出△AMQ∽△ABM,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得 = ,從而得到 = ,即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:已知△ABC中,∠ABC=∠ACB=α,點(diǎn)D是AB邊上任意一點(diǎn),連結(jié)CD,在CD的上測(cè)作以CD為底邊,α為底角的等腰△CDE,連結(jié)AE,試探究BD與AE的數(shù)量關(guān)系.
(1)嘗試探究如圖1,當(dāng)α=60°時(shí),小聰同學(xué)猜想有BD=AE,以下是他的思路呈現(xiàn).請(qǐng)你根據(jù)他的思路把這個(gè)證明過(guò)程完整地表達(dá)出來(lái);
(2)特例再探如圖2,當(dāng)α=45°時(shí),請(qǐng)你判斷線段BD與AE之間的數(shù)量關(guān)系,并進(jìn)行證明;
(3)問(wèn)題解決如圖3,當(dāng)α為任意銳角時(shí),請(qǐng)直接寫(xiě)出線段BD與AE的數(shù)量關(guān)系是 . (用含α的式子表示,其中0°<α<90°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).[圖2、圖3為解答備用圖]
(1)k= , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在拋物線y=x2﹣2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是平行四邊形,對(duì)角線OB在軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線y= 和y= 的一支上,分別過(guò)點(diǎn)A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
① = ;
②陰影部分面積是 (k1+k2);
③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關(guān)于x軸對(duì)稱,也關(guān)于y軸對(duì)稱.
其中正確的結(jié)論是(把所有正確的結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明晚上由路燈A下的點(diǎn)B處走到點(diǎn)C處時(shí),測(cè)得自身影子CD的長(zhǎng)為1米,他繼續(xù)往前走3米到達(dá)點(diǎn)E處(即CE=3米),測(cè)得自己影子EF的長(zhǎng)為2米,已知小明的身高是1.5米,那么路燈A的高度AB是( )
A.4.5米
B.6米
C.7.2米
D.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點(diǎn)E在BC邊上,AE與BD交于點(diǎn)F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是直徑AB上的一點(diǎn)(不與A重合),過(guò)點(diǎn)P作AB的垂線交BC于點(diǎn)Q.
(1)在線段PQ上取一點(diǎn)D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若cosB= ,BP=6,AP=1,求QC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com