如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與(x≥0)于B、C兩點(diǎn),過(guò)點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則=            .

試題分析:設(shè)A點(diǎn)坐標(biāo)為(0,a),利用兩個(gè)函數(shù)解析式求出點(diǎn)B、C的坐標(biāo),然后求出AB的長(zhǎng)度,再根據(jù)CD∥y軸,利用y1的解析式求出D點(diǎn)的坐標(biāo),然后利用y2求出點(diǎn)E的坐標(biāo),從而得到DE的長(zhǎng)度,然后求出比值即可得解.
設(shè)A點(diǎn)坐標(biāo)為(0,a),(a>0),
,解得,
∴點(diǎn)B(,a),
,解得,
∴點(diǎn)C(,a),
∵CD∥y軸,
∴點(diǎn)D的橫坐標(biāo)與點(diǎn)C的橫坐標(biāo)相同,為,
,
∴點(diǎn)D的坐標(biāo)為(,3a),
∵DE∥AC,
∴點(diǎn)E的縱坐標(biāo)為3a,
,解得,
∴點(diǎn)E的坐標(biāo)為(,),

點(diǎn)評(píng):本題主要利用了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)平行與x軸的點(diǎn)的縱坐標(biāo)相同,平行于y軸的點(diǎn)的橫坐標(biāo)相同,求出用點(diǎn)A的縱坐標(biāo)表示出各點(diǎn)的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:直線軸于點(diǎn),交軸于點(diǎn),拋物線經(jīng)過(guò)、(1,0)三點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)的坐標(biāo)為(-1,0),在直線上有一點(diǎn),使相似,求出點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在軸下方的拋物線上,是否存在點(diǎn),使的面積等于四邊形的面積?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)(-1,-4)且過(guò)點(diǎn)(0,-3),直線l是它的對(duì)稱軸。

(1)求此拋物線的解析式;
(2)設(shè)拋物線交x軸于點(diǎn)A、B(A在B的左邊),交y軸于點(diǎn)C,P為l上的一動(dòng)點(diǎn),當(dāng)△PBC的周長(zhǎng)最小時(shí),求P點(diǎn)的坐標(biāo)。
(3)在直線l上是否存在點(diǎn)M,使△MBC是等腰三角形,若存在,直接寫出符合條件的點(diǎn)M的坐標(biāo);若不存在請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象過(guò)點(diǎn).

(1)求二次函數(shù)的解析式;
(2)求證:是直角三角形;
(3)若點(diǎn)在第二象限,且是拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)垂直軸于點(diǎn),試探究是否存在以、、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線經(jīng)過(guò)B(3,0)、C(0,3)兩點(diǎn),頂點(diǎn)為A
求:(1)拋物線的表達(dá)式;
(2)頂點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與軸相交于兩個(gè)不同的點(diǎn)、,與軸的交點(diǎn)為.設(shè)的外接圓的圓心為點(diǎn)

(1)求軸的另一個(gè)交點(diǎn)D的坐標(biāo);
(2)如果恰好為的直徑,且的面積等于,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,把兩個(gè)全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點(diǎn)A(1,2)在二次函數(shù)y=ax2+(a+5)x的圖象上.

(1)求該二次函數(shù)的關(guān)系式;
(2)點(diǎn)C是否在此二次函數(shù)的圖象上,說(shuō)明理由;
(3)若點(diǎn)P為直線OC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線交拋物線于點(diǎn)M,問(wèn)是否存在這樣的點(diǎn)P,使得四邊形ABMP為平行四邊形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點(diǎn). 半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng). 兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng). 設(shè)點(diǎn)P的橫坐標(biāo)為t .

(1)點(diǎn)Q的橫坐標(biāo)是         (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖,則下列結(jié)論中正確的是
A.  B.當(dāng)時(shí),的增大而增大
C.  D.是方程的一個(gè)根

查看答案和解析>>

同步練習(xí)冊(cè)答案