【題目】在平面直角坐標(biāo)系中,己知為等腰三角形且面積為,滿足條件的點(diǎn)有( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】D

【解析】

先利用的面積是9,求得OM邊上的高為3,然后分三種情況:①當(dāng)OM=MN時(shí),②當(dāng)OM=ON時(shí),③當(dāng)MN=ON時(shí),分別求得點(diǎn)N的個(gè)數(shù),即可得到答案.

,

OM=6,

設(shè)中,OM邊上的高為h,

,解得h=3,

y軸的兩側(cè)作直線a和直線b都和y軸平行,且到y軸的距離都等于3,如圖,

①當(dāng)OM=MN時(shí),

以點(diǎn)M為圓心,以3為半徑畫圓,交直線a和直線b分別有2個(gè)點(diǎn),即有4個(gè)點(diǎn)符合;

②當(dāng)OM=ON時(shí),

以點(diǎn)O為圓心,以3為半徑畫圓,交直線a和直線b分別有2個(gè)點(diǎn),即有4個(gè)點(diǎn)符合;

③當(dāng)MN=ON時(shí),

OM的垂直平分線分別交直線a,b于一點(diǎn),即有2個(gè)點(diǎn)符合;

4+4+2=10,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在ABC中,∠ACB=90°,點(diǎn)P是線段AC上一點(diǎn),過(guò)點(diǎn)AAB的垂線,交BP的延長(zhǎng)線于點(diǎn)M,MNAC于點(diǎn)N,PQAB于點(diǎn)QAQ=MN 求證:

1APM是等腰三角形;

2PC=AN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,對(duì)角線ACBD交于點(diǎn)E,點(diǎn)O在線段AE上,⊙O過(guò)BD兩點(diǎn),若OC=5OB=3,且cos∠BOE=.求證:CB⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在大同市開(kāi)張的美化城市活動(dòng)中,某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng))的空地上修建一個(gè)矩形花園,花園的一邊靠前,另三邊用總長(zhǎng)為的柵欄圍成(如圖所示),若設(shè)花園的長(zhǎng)為,花園的面積為

之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

滿足條件的花園面積能達(dá)到嗎?若能,求出此時(shí)的值;若不能,說(shuō)明理由;

根據(jù)中求得的函數(shù)關(guān)系式,描述其圖象的變化趨勢(shì);并結(jié)合題意判斷當(dāng)取何值時(shí),花園的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)文具店均出售鋼筆和筆記本,其中每支鋼筆定價(jià)10元,每本筆記本定價(jià)5元.兩個(gè)文具店在開(kāi)展促銷活動(dòng)中,各自提出優(yōu)惠方案如下:

甲店:買一支鋼筆送一本筆記本;

乙店:買鋼筆或筆記本都按定價(jià)的80%付款.

現(xiàn)小明要購(gòu)買鋼筆30支,筆記本(>30).

(1)試用含的代數(shù)式表示:

①小明到甲店購(gòu)買所付款為 元;

②小明到乙店購(gòu)買所付款為 元;

(2)當(dāng)40時(shí),你能幫小明設(shè)計(jì)一種最為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,且經(jīng)過(guò)點(diǎn)(1,).點(diǎn)F(0,1)在y軸上.直線y=1y軸交于點(diǎn)H

(1)求該二次函數(shù)的解析式;

(2)設(shè)點(diǎn)P是(1)中圖象上在第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線與直線y=-1交于點(diǎn)M.

①求證:FM平分∠OFP

②當(dāng)FPM是等邊三角形時(shí),試求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,D、E分別是△ABC的邊BC、AC上的點(diǎn),且AB=AC,AD=AE.

(1)若∠BAD=20°,則∠EDC= °.

(2)若∠EDC=20°,則∠BAD= °.

(3)設(shè)∠BAD=α,EDC=β,你能由(1)(2)中的結(jié)果找到α、β間所滿足的關(guān)系嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=AD

1)作∠A的平分線交CDE;

2)過(guò)BCD的垂線,垂足為F;

3)請(qǐng)寫出圖中兩對(duì)全等三角形(不添加任何字母),并選擇其中一對(duì)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m),

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400 的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案