【題目】如圖,在RtABC中,∠BAC90°,DBC的中點(diǎn),連接ADEAD的中點(diǎn),過(guò)AAFBCBE延長(zhǎng)線于F,連接CF

1)求證:四邊形ADCF是菱形;

2)在不添加任何輔助線的情況下,請(qǐng)直接寫出與ACD面積相等的三角形(不包含ACD).

【答案】1)見(jiàn)解析;(2)與ACD面積相等的三角形有:ABD,ACF,AFB

【解析】

1)首先由EAD的中點(diǎn),AFBC,易證得AFE≌△DBE,即可得AFBD,又由在RtABC中,∠BAC90°,DBC的中點(diǎn),可得ADBDCDAF,證得四邊形ADCF是平行四邊形,繼而判定四邊形ADCF是菱形;

2)根據(jù)平行線之間的距離處處相等、等高模型和菱形的性質(zhì)即可解決問(wèn)題;

1)證明:如圖,∵AFBC,

∴∠AFE=∠DBE,

EAD的中點(diǎn),ADBC邊上的中線,

AEDE,BDCD,

AFEDBE中,

,

∴△AFE≌△DBEAAS);

AFDB

DBDC,

AFCD,

∴四邊形ADCF是平行四邊形,

∵∠BAC90°,DBC的中點(diǎn),

ADDCBC,

∴四邊形ADCF是菱形;

2)∵BD=CD,而△ABD的邊BD上的高即為△ACD的邊CD上的高

SACD=SABD;

∵四邊形ADCF是菱形

SACD=SACF;

AFCD

∴△ACD的邊CD上的高等于△BAF的邊AF上的高

AF=CD

SACD=SAFB

綜上:與ACD面積相等的三角形有:ABD,ACFAFB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行·文藝會(huì)演,5位評(píng)委給各班演出的節(jié)目打分.在5個(gè)評(píng)分中,去掉一個(gè)最高分,再去掉一個(gè)最低分,求出評(píng)分的平均數(shù),作為該節(jié)目的實(shí)際得分,對(duì)于某節(jié)目的演出,評(píng)分如下8.99.1,9.39.4,9.2那么該節(jié)目實(shí)際得分是( )

A.9.4B.9.3C.9.2D.9.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)軸的正半軸上,.對(duì)角線相交于點(diǎn),反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn),分別與交于點(diǎn).

1)若,求的值;

2)連接,若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,于點(diǎn)D

1)如圖1,當(dāng)時(shí),若CE平分,交AB于點(diǎn)E,交BD于點(diǎn)F

①求證:是等腰三角形;

②求證:;

2)點(diǎn)EAB邊上,連接CE.若,在圖2中補(bǔ)全圖形,判斷之間的數(shù)量關(guān)系,寫出你的結(jié)論,并寫出求解關(guān)系的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn)ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°得到AB′C′

1在正方形網(wǎng)格中,畫出AB′C′;

2計(jì)算線段AB在變換到AB′的過(guò)程中掃過(guò)的區(qū)域的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)課上,老師對(duì)大學(xué)說(shuō):你任意想一個(gè)非零實(shí)數(shù),然后按下列步驟操作,我會(huì)直接說(shuō)出你運(yùn)算的最后結(jié)果

操作步驟如下:

第一步:計(jì)算這個(gè)數(shù)與1的和的平方,減去這個(gè)數(shù)與1的差的平方

第二步:把第一步得到的數(shù)乘以25

第三步:把第二步得到的數(shù)除以你想的這個(gè)數(shù)

1)若小明同學(xué)心里想的是數(shù)9,請(qǐng)幫他計(jì)算出最后結(jié)果:

.

2)老師說(shuō):同學(xué)們,無(wú)論你們心里想的是什么非零實(shí)數(shù),按照以上步驟進(jìn)行操作,得到的最后結(jié)果都相等,小明同學(xué)想驗(yàn)證這個(gè)結(jié)論,于是,設(shè)心里想的數(shù)是aa0),請(qǐng)你幫小明完成這個(gè)驗(yàn)證過(guò)程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】423日是世界讀書日,某校為了解學(xué)生課外閱讀情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時(shí)間,過(guò)程如下:

數(shù)據(jù)收集:從全校隨機(jī)抽取20名學(xué)生,進(jìn)行了每周用于課外閱讀時(shí)間的調(diào)查,數(shù)據(jù)如下(單位:)

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補(bǔ)全表格:

課外閱讀時(shí)間

等級(jí)

人數(shù)

3

8

分析數(shù)據(jù):補(bǔ)全下列表格中的統(tǒng)計(jì)量:

平均數(shù)

中位數(shù)

眾數(shù)

80

1        ,    ,    ;

2)用樣本中的統(tǒng)計(jì)量估計(jì)該校學(xué)生每周用于課外閱讀時(shí)間的情況等級(jí)為    ;

3)如果該校現(xiàn)有學(xué)生400人,估計(jì)等級(jí)為“”的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖(1),一圓柱的高為5dm,底面半徑為5dmBC是底面直徑,求一只螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線.小明設(shè)計(jì)了兩條路線:

路線1:側(cè)面展開(kāi)圖中的AC.如下圖(2)所示:

設(shè)路線1的長(zhǎng)度為,則,

路線2:高線AB + 底面直徑BC.如上圖(1)所示:

設(shè)路線2的長(zhǎng)度為,則,

,

,

所以要選擇路線2較短.

1)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:圓柱的底面半徑為1dm,高AB5dm”繼續(xù)按前面的路線進(jìn)行計(jì)算.請(qǐng)你幫小明完成下面的計(jì)算:

路線1___________________;

路線2__________

(><) 所以應(yīng)選擇路線_________(12)較短.

(2)請(qǐng)你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時(shí),應(yīng)如何選擇上面的兩條路線才能使螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到C點(diǎn)的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,對(duì)角線交于點(diǎn),,點(diǎn)是對(duì)角線上一點(diǎn)(可與重合),以點(diǎn)為圓心,為半徑作(其中).

1)如圖1,當(dāng)點(diǎn)重合,且時(shí),過(guò)點(diǎn),分別作的切線,切點(diǎn)分別為,.求證:;

2)如圖2,當(dāng)點(diǎn)與點(diǎn)重合,且在菱形內(nèi)部時(shí)(不含邊界),求的取值范圍;

3)當(dāng)點(diǎn)的內(nèi)心時(shí),直接寫出的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案