【題目】如圖,一條直線與反比例函數(shù)的圖像交于、兩點(diǎn),與軸交于點(diǎn),軸,垂足為.
(1)如圖甲,求反比例函數(shù)的解析式與點(diǎn)的坐標(biāo);
(2)如圖乙,若點(diǎn)在線段上運(yùn)動,連接,作,交于點(diǎn).試說明.
【答案】(1)y=,D點(diǎn)坐標(biāo)為(5,0); (2)證明見解析.
【解析】
(1)根據(jù)點(diǎn)A的坐標(biāo)即可求出反比例函數(shù)的解析式;再求出B點(diǎn)的坐標(biāo)B(4,1),即得n=1;利用待定系數(shù)法求一次函數(shù)的解析式,令一次函數(shù)的y=0,求得點(diǎn)D的坐標(biāo)D(5,0);
(2)要證△CDE∽△EAF,只要證明出△CDE和△EAF的三個(gè)內(nèi)角分別對應(yīng)相等,即可得證;
解:(1)∵點(diǎn)A(1,4)在反比例函數(shù)圖象上
∴k=4
即反比例函數(shù)關(guān)系式為;
②∵點(diǎn)B(4,n)在反比例函數(shù)圖象上
∴n=1
設(shè)一次函數(shù)的解析式為y=mx+b
∵點(diǎn)A(1,4)和B(4,1)在一次函數(shù)y=mx+b的圖象上
∴,
解得,
∴一次函數(shù)關(guān)系式為y=﹣x+5
令y=0,得x=5
∴D點(diǎn)坐標(biāo)為(5,0);
(2)證明:∵A(1,4),D(5,0),AC⊥x軸
∴C(1,0)
∴AC=CD=4,
即∠ADC=∠CAD=45°,
∵∠AEC=∠ECD+∠ADC=∠ECD+45°,
∠AEC=∠AEF+∠FEC=∠AEF+45°,
∴∠ECD=∠AEF,
∴△CDE∽△EAF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:
信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+1與反比例函數(shù)y=(x<0)的圖象交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,且S△AOB=1,則反比例函數(shù)解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點(diǎn),M是BC邊上的動點(diǎn)(點(diǎn)M不與B、C重合),過點(diǎn)C作CN垂直DM交AB于點(diǎn)N,連結(jié)OM、ON、MN.下列五個(gè)結(jié)論:①△CNB≌△DMC;②;③ON⊥OM;④若AB=2,則的最小值是1;⑤.其中正確結(jié)論是_________.(只填番號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,,點(diǎn)在邊上,以為圓心,為半徑的弧經(jīng)過點(diǎn)是弧上一個(gè)動點(diǎn).
求半徑的長;
如果點(diǎn)是弧的中點(diǎn),聯(lián)結(jié),求的正切值;
如果平分,延長交于點(diǎn),求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有多少人?
(2)計(jì)算并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有學(xué)生2000人,估計(jì)該校約有多少人選修樂器課程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為圓上(除A、B外)一動點(diǎn),∠ACB的角平分線交⊙O于D,若AC=8,BC=6,則BD的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動點(diǎn)P在拋物線上.
(1)求拋物線的解析式;
(2)若動點(diǎn)P在第四象限內(nèi)的拋物線上,過動點(diǎn)P作x軸的垂線交直線AC于點(diǎn)D,交x軸于點(diǎn)E,垂足為E,求線段PD的長,當(dāng)線段PD最長時(shí),求出點(diǎn)P的坐標(biāo);
(3)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)“切實(shí)減輕學(xué)生課業(yè)負(fù)擔(dān)”是我市作業(yè)改革的一項(xiàng)重要舉措.某中學(xué)為了解本校學(xué)生平均每天的課外作業(yè)時(shí)間,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個(gè)等級.A:1小時(shí)以內(nèi),B:1小時(shí)-1.5小時(shí),C:1.5小時(shí)-2小時(shí),D:小時(shí)以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了_________名學(xué)生;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)表示等級A的扇形圓心角的度數(shù)是____________;
(4)在此次問卷調(diào)查中,甲、乙兩班各有2人平均每天課外作業(yè)時(shí)間都是2小時(shí)以上,從這4人中任選2人去參加座談,用列表或樹狀圖的方法求選出的2人來自不同班級的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com