【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動點(diǎn),試過點(diǎn)P作x軸的垂線1,再過點(diǎn)A作1的垂線,垂足為Q,連接AP.
(1)求拋物線的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);
(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對稱軸的右側(cè)時(shí),若將△APQ沿AP對折,點(diǎn)Q的對應(yīng)點(diǎn)為點(diǎn)Q′,請直接寫出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x2+3x+4;(﹣1,0);(2)P的橫坐標(biāo)為或.(3)點(diǎn)P的坐標(biāo)為(4,0)或(5,﹣6)或(2,6).
【解析】
(1)利用待定系數(shù)法求拋物線解析式,然后利用拋物線解析式得到一元二次方程,通過解一元二次方程得到C點(diǎn)坐標(biāo);
(2)利用△AQP∽△AOC得到AQ=4PQ,設(shè)P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P點(diǎn)坐標(biāo);
(3)設(shè)P(m,﹣m2+3m+4)(m>),當(dāng)點(diǎn)Q′落在x軸上,延長QP交x軸于H,如圖2,則PQ=m2﹣3m,證明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,則OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此時(shí)P點(diǎn)坐標(biāo);當(dāng)點(diǎn)Q′落在y軸上,易得點(diǎn)A、Q′、P、Q所組成的四邊形為正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此時(shí)P點(diǎn)坐標(biāo).
解:(1)把A(0,4),B(4,0)分別代入y=﹣x2+bx+c得,解得,
∴拋物線解析式為y=﹣x2+3x+4,
當(dāng)y=0時(shí),﹣x2+3x+4=0,解得x1=﹣1,x2=4,
∴C(﹣1,0);
故答案為y=﹣x2+3x+4;(﹣1,0);
(2)∵△AQP∽△AOC,
∴,
∴,即AQ=4PQ,
設(shè)P(m,﹣m2+3m+4),
∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,
解方程4(m2﹣3m)=m得m1=0(舍去),m2=,此時(shí)P點(diǎn)橫坐標(biāo)為;
解方程4(m2﹣3m)=﹣m得m1=0(舍去),m2=,此時(shí)P點(diǎn)坐標(biāo)為;
綜上所述,點(diǎn)P的坐標(biāo)為(,)或(,);
(3)設(shè),
當(dāng)點(diǎn)Q′落在x軸上,延長QP交x軸于H,如圖2,
則PQ=4﹣(﹣m2+3m+4)=m2﹣3m,
∵△APQ沿AP對折,點(diǎn)Q的對應(yīng)點(diǎn)為點(diǎn)Q',
∴∠AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2﹣3m,
∵∠AQ′O=∠Q′PH,
∴Rt△AOQ′∽Rt△Q′HP,
∴,即,解得Q′H=4m﹣12,
∴OQ′=m﹣(4m﹣12)=12﹣3m,
在Rt△AOQ′中,42+(12﹣3m)2=m2,
整理得m2﹣9m+20=0,解得m1=4,m2=5,此時(shí)P點(diǎn)坐標(biāo)為(4,0)或(5,﹣6);
當(dāng)點(diǎn)Q′落在y軸上,則點(diǎn)A、Q′、P、Q所組成的四邊形為正方形,
∴PQ=AQ′,
即|m2﹣3m|=m,
解方程m2﹣3m=m得m1=0(舍去),m2=4,此時(shí)P點(diǎn)坐標(biāo)為(4,0);
解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此時(shí)P點(diǎn)坐標(biāo)為(2,6),
綜上所述,點(diǎn)P的坐標(biāo)為(4,0)或(5,﹣6)或(2,6)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生對《最強(qiáng)大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個(gè)電視節(jié)目的喜愛情況,隨杋抽取了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表:
學(xué)生最喜愛的節(jié)目人數(shù)統(tǒng)計(jì)表
節(jié)目 | 人數(shù)(名) | 百分比 |
最強(qiáng)大腦 | 5 | 10% |
朗讀者 | 15 | |
中國詩詞大會 | 40% | |
出彩中國人 | 10 | 20% |
根據(jù)以上信息,回答下列問題:
(1) , ;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生名,估計(jì)該校學(xué)生最喜愛《朗讀者》節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在全國預(yù)防“新冠肺炎”時(shí)期,某廠接受了生產(chǎn)一批高質(zhì)量醫(yī)用口罩的任務(wù).要求8天之內(nèi)(含8天)生產(chǎn)型和型兩種型號的口罩共5萬只,其中型口罩不得少于1.8萬只.該廠的生產(chǎn)能力是:每天只能生產(chǎn)一種型號的口罩,若生產(chǎn)型口罩每天能生產(chǎn)0.6萬只,若生產(chǎn)型口罩每天能生產(chǎn)0.8萬只.已知生產(chǎn)6只型和10只型口罩一共獲利6元,生產(chǎn)4只型和5只型口罩一共獲利3.5元
(1)生產(chǎn)一只型口罩和型口罩分別獲利多少錢?
(2)若生產(chǎn)型口罩萬只,該廠這次生產(chǎn)口罩的總利潤為萬元,請求出關(guān)于的函數(shù)關(guān)系式;
(3)在完成任務(wù)的前提下,如何安排生產(chǎn)型和型口罩的只數(shù),使獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=x2﹣mx+n.
(1)當(dāng)m=2時(shí),
①求拋物線的對稱軸,并用含n的式子表示頂點(diǎn)的縱坐標(biāo);
②若點(diǎn)A(﹣2,y1),B(x2,y2)都在拋物線上,且y2>y1,則x2的取值范圍是 ;
(2)已知點(diǎn)P(﹣1,2),將點(diǎn)P向右平移4個(gè)單位長度,得到點(diǎn)Q.當(dāng)n=3時(shí),若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師準(zhǔn)備了四張背面都一樣的卡片A、B、C、D,每張卡片的正面標(biāo)有字母a、b、c表示三條線段(如下圖).把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取一張.
⑴ 李老師隨機(jī)抽取一張卡片,抽到卡片B的概率等于 ;
⑵ 求李老師抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校為了了解九年級學(xué)生身體素質(zhì)測試情況,隨機(jī)抽取了本校九年級部分學(xué)生的身體素質(zhì)測試成績?yōu)闃颖,?/span>A(優(yōu)秀)、B(良好)、C(合格)、D(不合格)四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的統(tǒng)計(jì)圖,請你結(jié)合圖表所給信息解答下列問題:
(1)請?jiān)诖痤}卡上直接將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中“B”部分所對應(yīng)的圓心角的度數(shù)是 °;
(3)若我校九年級共有1500名學(xué)生參加了身體素質(zhì)測試,試估計(jì)測試成績合格以上(含合格)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正方形ABCD中,E為AB中點(diǎn),P為對角線AC上一點(diǎn),且PB+PE=,則正方形ABCD邊長的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)歷疫情復(fù)學(xué)后,學(xué)校開展了多種形式的防疫知識講座,并舉行了全員參加的“防疫”知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從七年級1,2,3班中各隨機(jī)抽取10名同學(xué)的成績(單位:分).
收集整理數(shù)據(jù)如下:
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中,,,的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績比較好?請說明理由(一條理由即可);
(3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎狀,該校七年級學(xué)生共120人,試估計(jì)需要準(zhǔn)備多少張獎狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的中點(diǎn),是的中點(diǎn),過點(diǎn)作交的延長線于點(diǎn).
(1)求證:四邊形是菱形;
(2)若,,求菱形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com