【題目】如圖,四邊形ABCD是矩形,點E在BC邊上,點F在BC延長線上,且∠CDF =∠BAE.
(1)求證:四邊形AEFD是平行四邊形;
(2)若DF=3,DE=4,AD=5,求CD的長度.
【答案】(1)見解析;(2).
【解析】分析:(1)直接利用矩形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出BE=CF,進而得出答案;
(2)利用勾股定理的逆定理得出∠EDF=90 ,進而得出ED·DF=EF·CD,求出答案即可.
詳解:(1)∵四邊形ABCD是矩形,
∴AB=CD, ∠B=∠DCF=90.
∵,
∴△ABE≌△DCF.
∴BE=CF,
∴BC=EF.
∵BC=AD, ∴EF=AD.又∵EF∥AD,
∴四邊形AEFD是平行四邊形.
(2)解:由(1)知,EF=AD= 5.
在△EFD中,DF=3,DE=4,EF=5,
∴.
∴∠EDF=90.
∴EDDF=EFCD,
∴CD=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應(yīng)),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點 A′,B,則的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求A,B兩點的坐標;
(2)過B點作直線與x軸交于點P,若△ABP的面積為,試求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點 E.若AB=8,BC=14,則線段EF的長為( 。
A. 2B. 3C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個批發(fā)兼零售的文具店規(guī)定:凡一次購買鉛筆300枝以上,(不包括300枝),可以按批發(fā)價付款,購買300枝以下,(包括300枝)只能按零售價付款。小明來該店購買鉛筆,如果給八年級學生每人購買1枝,那么只能按零售價付款,需用120元,如果購買60枝,那么可以按批發(fā)價付款,同樣需要120元,
(1) 這個八年級的學生總數(shù)在什么范圍內(nèi)?
(2) 若按批發(fā)價購買6枝與按零售價購買5枝的款相同,那么這個學校八年級學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交BE的延長線于F,且AF=DC,連接CF.
(1)求證:D是BC的中點;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com