精英家教網(wǎng)如圖,A是半徑為2
2
的⊙O外一點(diǎn),OA=4,AB是⊙O的切線(xiàn),點(diǎn)B是切點(diǎn),弦BC∥OA,則BC的長(zhǎng)為( 。
A、
2
B、2
C、2
2
D、4
分析:連接OC,在Rt△OAB中,根據(jù)勾股定理得OA=
42-(2
2
)
2
=2
2
,∠AOB=∠OAB=45°;
在△OCB中,OC=OB=2
2
可知∠2=∠3,利用BC∥OA,Rt△OCB與Rt△BAO中的相等線(xiàn)段和角可判定Rt△OCB≌Rt△BAO,所以可求BC=OA=4.
解答:精英家教網(wǎng)解:如圖:連接OC,在Rt△OAB中
OA=4,OB=2
2

∵AB2=OA2-OB2
即AB=
42-(2
2
)
2
=2
2

∴OB=AB,∠AOB=∠OAB=45°.
在△OCB中,
OC=OB=2
2
,∠2=∠3.
∵BC∥OA,
∴∠3=∠AOB=∠OAB=45°.
∴△OCB是直角三角形.
在Rt△OCB與Rt△BAO中
OC=OB=AB,∠4=∠ABO=90°,
∴Rt△OCB≌Rt△BAO.
∴BC=OA=4.
故選D.
點(diǎn)評(píng):本題考查了圓的切線(xiàn)性質(zhì),及解直角三角形的知識(shí).
運(yùn)用切線(xiàn)的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線(xiàn)連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為1,如果作兩條互相垂直的直徑AB,CD,那么弦AC是⊙O的內(nèi)接正四邊形的一條邊.若以A為圓心,以1為半徑畫(huà)弧,弧與⊙O相交于點(diǎn)E,F(xiàn),則弦EC是⊙O的內(nèi)接正十二邊形的一條邊,EC的長(zhǎng)為(  )
A、
3
-1
4
B、
6
-
2
4
C、
3
-1
2
D、
6
-
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家口一模)已知:如圖1,⊙O與射線(xiàn)MN相切于點(diǎn)M,⊙O的半徑為2,AC是⊙O的直徑,A與M重合,△ABC是⊙O的內(nèi)接三角形,且∠C=30°,
計(jì)算:弦AB=
2
2
AB
的長(zhǎng)度
2
3
π
2
3
π
(結(jié)果保留π)
探究一:如圖2,若⊙O和△ABC沿射線(xiàn)MN方向作無(wú)滑動(dòng)的滾動(dòng),
(1)直接寫(xiě)出:點(diǎn)B第一次在射線(xiàn)MN上時(shí),圓心O所走過(guò)的路線(xiàn)的長(zhǎng)
2
3
π
2
3
π
點(diǎn)B第二次在射線(xiàn)MN上時(shí),圓心O所走過(guò)的路線(xiàn)的長(zhǎng)
14
3
π
14
3
π
(結(jié)果保留π)
(2)過(guò)點(diǎn)A、C分別作AD⊥MN于D,CE⊥MN于E,連接OD、OE,小明通過(guò)作圖猜想:OD與OE相等,你認(rèn)為小明的猜想正確嗎?請(qǐng)說(shuō)明你的理由
探究二:
如圖3,將半徑為R、圓心角為50°的扇形紙片AOB,在射線(xiàn)MN的方向作無(wú)滑動(dòng)的滾動(dòng)至扇形A′O′B′處,則頂點(diǎn)O經(jīng)過(guò)的路線(xiàn)總長(zhǎng)為
23
18
πR
23
18
πR
(用含R的代數(shù)式表示,結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的半徑為1,點(diǎn)A是半圓上的一個(gè)三等分點(diǎn),點(diǎn)B是
AN
的中點(diǎn),P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,MN是半徑為1的⊙O的直徑,點(diǎn)A在⊙O上,∠AMN=30°,B為AN弧的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案