【題目】課本例題

已知:如圖,AD的角平分線,,,垂足分別為E、F.求證:AD垂直平分EF

小明做法

證明:因為AD的角平分線,,,所以

理由是:“角平分線上的點到這個角的兩邊的距離相等”.

因為

所以AD垂直平分EF

理由是:“到線段兩個端點距離相等的點在這條線段的垂直平分線上”.

老師觀點

老師說:小明的做法是錯誤的

請你解決

指出小明做法的錯誤;

正確、完整的解決這道題.

【答案】見解析;見解析.

【解析】

小明證明不能說明AD垂直平分EF,只有再證明時,A也在EF的垂直平分線上,兩點確定一條直線,才能得結(jié)論;

先利用角平分線性質(zhì)得出;再證,易證AD垂直平分EF.

,只能得DEF的垂直平分線上,不能說AD垂直平分EF.

的角平分線,,,

,

中,

,

,

,又

垂直平分到線段兩端點的距離相等的點一定在線段的垂直平分線上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為(
A.
B.2
C.
D.10﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C=90°,AC=BC,點C在第一象限內(nèi).若A(5,0),B (-2,4),C(m,n),則(m+n)(m-n)的值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x﹣m)2+n的頂點在線段AB上運動(拋物線隨頂點一起平移),與x軸交于C、D兩點(C在D的左側(cè)),點C的橫坐標(biāo)最小值為﹣3,則點D的橫坐標(biāo)最大值為( )

A.﹣3
B.1
C.5
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的長方形紙片,O為原點,點Ax軸的正半軸上,點Cy軸的正半軸上,OA=10 ,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E.

(1)求CEOD的長;

(2)求直線DE的表達(dá)式;

(3)直線y=kx+bDE平行,當(dāng)它與矩形OABC有公共點時,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,點P在AOB的平分線上。 正確的是 填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:王高虎頭雞,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鴨蛋”四種特產(chǎn),在全市范圍內(nèi)隨機抽取了部分市民進(jìn)行問卷調(diào)查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調(diào)查結(jié)果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.
(1)請補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(2)若全市有110萬市民,估計全市最喜歡“羊口咸蟹子”的市民約有多少萬人?
(3)在一個不透明的口袋中有四個分別寫上四種特產(chǎn)標(biāo)記A、B、C、D的小球(除標(biāo)記外完全相同),隨機摸出一個小球然后放回,混合搖勻后,再隨機摸出一個小球,則兩次都摸到A的概率是多少?寫出分析計算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元一次不等式組 的解是x<5,則m的取值范圍是( )
A.m≥5
B.m>5
C.m≤5
D.m<5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(2m+1)x+m﹣3

(1)若函數(shù)圖象經(jīng)過原點,求m的值;

(2)若函數(shù)圖象與y軸的交點坐標(biāo)為(0,﹣2),求m的值;

(3)若y隨著x的增大而增大,求m的取值范圖;

(4)若函數(shù)圖象經(jīng)過第一、三,四象限,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案