【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP(備注:當EF=FP,∠EFP=90°時,∠PEF=∠FPE=45°,反之當∠PEF=∠FPE=45°時,當EF=FP).
(1)在圖1中,請你通過觀察、測量、猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.
(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連接AP,BQ.猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并證明你的猜想;
(3)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP、BQ.你認為(2)中所猜想的BQ與AP的結(jié)論還成立嗎?若成立,給出證明:若不成立,請說明理由.
【答案】(1)AB=AP;AB⊥AP;(2)BQ=AP;BQ⊥AP;證明見解析;(3)成立,證明見解析.
【解析】
(1)根據(jù)圖形就可以猜想出結(jié)論.
(2)要證BQ=AP,可以轉(zhuǎn)化為證明Rt△BCQ≌Rt△ACP;要證明BQ⊥AP,可以證明∠QMA=90°,只要證出∠1=∠2,∠3=∠4,∠1+∠3=90°即可證出.
(3)類比(2)的證明就可以得到,結(jié)論仍成立.
(1)AB=AP;AB⊥AP;
∵AC⊥BC且AC=BC,
∴△ABC為等腰直角三角形,
∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,
又∵△ABC與△EFP全等,
同理可證∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
(2)BQ=AP;BQ⊥AP.
證明:①由已知,得EF=FP,EF⊥FP,
∴∠EPF=45°.
又∵AC⊥BC,
∴∠CQP=∠CPQ=45°.
∴CQ=CP.
∵在Rt△BCQ和Rt△ACP中,
BC=AC,∠BCQ=∠ACP=90°,CQ=CP,
∴△BCQ≌△ACP(SAS),
∴BQ=AP.
②如圖,延長BQ交AP于點M.
∵Rt△BCQ≌Rt△ACP,
∴∠1=∠2.
∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,
∴∠2+∠4=∠1+∠3=90°.
∴∠QMA=90°.
∴BQ⊥AP;
(3)成立.
①如圖,∵∠EPF=45°,
∴∠CPQ=45°.
又∵AC⊥BC,
∴∠CQP=∠CPQ=45°.
∴CQ=CP.
∵在Rt△BCQ和Rt△ACP中,
BC=AC,CQ=CP,∠BCQ=∠ACP=90°,
∴Rt△BCQ≌Rt△ACP.
∴BQ=AP.
②如圖③,延長QB交AP于點N,則∠PBN=∠CBQ.
∵Rt△BCQ≌Rt△ACP,
∴∠BQC=∠APC.
∵在Rt△BCQ中,∠BQC+∠CBQ=90°,
又∵∠CBQ=∠PBN,
∴∠APC+∠PBN=90°.
∴∠PNB=90°.
∴QB⊥AP.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,延長BC到點F,連接AF,使∠ABC=2∠CAF.
(1)求證:AF是⊙O的切線;
(2)若AC=4,CE:EB=1:3,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在反比例函數(shù)y=(x>0)的圖像上,點B在反比例函數(shù)y=(x>0)的圖像上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積是6,則k的值為( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個位上的數(shù)字之和為y,如果x=y,那么稱這個四位數(shù)為“和平數(shù)”.
例如:2635,x=2+6,y=3+5,因為x=y,所以2635是“和平數(shù)”.
(1)請判斷:3562 (填“是”或“不是”)“和平數(shù)”.
(2)直接寫出:最小的“和平數(shù)”是 ,最大的“和平數(shù)”是 ;
(3)如果一個“和平數(shù)”的個位上的數(shù)字是千位上的數(shù)字的兩倍,且百位上的數(shù)字與十位上的數(shù)字之和是14,求滿足條件的所有“和平數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,若平移點到點,使以點為頂點的四邊形是菱形,則正確的平移方法是( )
A. 向左平移()個單位,再向上平移1個單位
B. 向左平移個單位,再向下平移1個單位
C. 向右平移個單位,再向上平移1個單位
D. 向右平移2個單位,再向上平移1個單位
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場今年月的商品銷售總額一共是萬元,如圖(1)表示的是其中每個月銷售總額的情況,圖(2)表示的是商場服裝部各月銷售額占商場當月銷售總額的百分比情況,觀察圖(1)、圖(2),下列說法不正確的是( )
A. 4月份商場的商品銷售總額是75萬元 B. 1月份商場服裝部的銷售額是22萬元
C. 5月份商場服裝部的銷售額比4月份減少了 D. 3月份商場服裝部的銷售額比2月份減少了
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是直角,射線在的內(nèi)部,平分,平分.
(1)若,求的度數(shù).
(2)若,求的度數(shù).
(3)的度數(shù)是否隨著射線的位置變化而變化?如果不變,請說明理由;如果變化,請說明是如何變化的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:①13+(﹣22)﹣(﹣2)
②﹣4
③(×(﹣48)
④﹣14﹣(﹣1)[﹣23+(﹣3)2]
(2)化簡:①(3mn﹣2m2)+(﹣4m2﹣5mn)
②﹣(2a﹣3b)﹣2(﹣a+4b﹣1)
(3)先化簡再求值:7x2y﹣2(2x2y﹣3xy2)-(4x2y﹣xy2),其中x=﹣2,y=1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com